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Summary

Stochastic differential equations (SDEs) constitute a formidable tool for modeling the

dynamics of continuous-time stochastic processes and offer a natural framework for the

probabilistic modeling of high-dimensional data. Consequently, they have garnered in-

creasing attention in generative machine learning. Despite their promise, the applications

of SDEs in machine learning have been limited due to the lack of scalable learning ap-

proaches that can train flexible neural networks to approximate stochastic processes, and

the difficulty of conducting tractable inference and sampling caused by inefficient SDE

solvers.

In my thesis, I outline my efforts to develop novel computational models capable of

efficient and scalable learning, sampling, and inference from SDEs. Specifically, I in-

troduce several approaches to learning SDEs for probabilistic modeling, including fitting

non-linear forward and backward SDEs with neural networks and learning with limited

data. Next, I present a novel deep model designed to learn SDE dynamics while satisfying

given constraints on the marginal probability of the SDE. Furthermore, I developed an effi-

cient algorithm for drawing samples from high-dimensional SDEs, which proves effective

in generating diverse and high-fidelity data, such as realistic images and videos.

Although recent probability models have demonstrated remarkable achievements, the

majority of these models have primarily focused on generative tasks. Few studies have

explored or verified that knowledge acquired from such models could have the potential

to benefit other fields, particularly with respect to various downsampling inference tasks.

Additionally, this study outlines several limitations of current generative probability models

that are founded on neural SDEs and explore several promising directions to overcome

these limitations and further advance the field.

xvi



CHAPTER 1

INTRODUCTION

Stochastic differential equations (SDEs), which model the random dynamics subject to

drift and diffusion noise, are an ideal framework for describing the evolution of probability

distributions in various fields. The use of neural networks to model SDEs is commonly

referred to as neural SDEs [1]. Although the initial motivation behind neural SDEs was

to provide a flexible tool for time series modeling and Bayesian variational inference [1],

practitioners have leveraged neural SDEs to solve a variety of machine learning problems,

either explicitly or implicitly [2, 3, 4, 5]. This thesis will mainly focus on the application

of SDEs in probability modeling and its applications.

There are four main components of probability modeling: representation, learning,

sampling, and inference. While SDEs are widely used to connect an interested intractable

distribution to a tractable distribution, such as the connection between the distribution of

real images and Gaussian distributions, SDEs give a natural framework for probability

representation. The learning of SDEs aims to fit an SDE such that certain properties of

the joint or marginal distribution are desired. One common desired property is that the

end distribution of the SDE is close to the target distribution. To learn SDEs, we may be

presented with empirical samples from the target distribution, or we may only access the

unnormalized density of the target distribution. The first case is also known as density

estimation [6]. The second case is closely related to variational inference (VI) and Monte

Carlo (MC) methods. Sampling is the process of generating samples from the interested

target distribution, which can be achieved via simulating the SDE. From learned models of

the target distribution, we can further perform inference to derive logical conclusions about

the target distribution.

We start with generative tasks, which ask for generating non-trivial samples given em-
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pirical samples from the target distribution. Arguably, the most popular application of

SDEs in machine learning is in diffusion generative models [7], also known as score-based

generative models [4]. These models consist of a forward SDE that transforms clean data

points into random noise by continuously injecting noise and a backward denoising SDE

that iteratively removes noise until recovering clean data points from the noise. In recent

years, diffusion models have achieved impressive performances on various tasks, including

unconditional image generation [7, 4, 8, 9], text-conditioned image generation [10, 11],

text generation [12, 13], 3D point cloud generation [14], and inverse problems [15, 16].

From an algorithmic design perspective, the impressive performance of diffusion mod-

els relies on two fundamental components. Firstly, the forward stochastic differential equa-

tion (SDE) is typically a linear SDE that allows for a closed-form expression of the tran-

sition probability. This property facilitates the fast drawing of noised samples along SDE

trajectories for training denoising networks. Nevertheless, the rigid structure of linear SDEs

may constrain the expressiveness of the forward noising dynamics when compared to more

general SDEs. To overcome this limitation, diffusion models necessitate long-duration

noising dynamics, requiring multiple fine-grained denoising steps. This constitutes the

second fundamental component for the success of diffusion models. The backward de-

noising SDE, which is a time-reverse of the forward SDE, iteratively removes noise to

generate images, leading to more expressive generative models and reducing the compu-

tational burden on the generative network compared to directly generating images from

noise. However, the iterative nature of the denoising process is computationally expensive,

particularly given that the evaluation of denoising networks employed in diffusion mod-

els is usually costly due to their large neural networks, consisting of hundreds of millions

or even billions of parameters. For example, the Denoising Diffusion Probabilistic Model

(DDPM) [7] requires 1000 steps to generate one sample, with each step requiring evalua-

tion of the neural network once. This is considerably slower than Generative Adversarial

Networks (GANs) [17, 18].
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In this thesis, we first revisit the choice of linear SDEs and argue that general SDEs can

be utilized to learn more efficient data-adaptive noising dynamics and generate samples

with comparable quality but greater efficiency. We provide non-trivial training schemes to

scale up the neural SDE models for generation tasks. Secondly, we revisit the previous de-

noising scheme and argue that solving differential equations by treating the entire SDE as a

black box is not the most efficient approach for generating samples. Instead, we propose to

draw samples by solving a family of marginal-equivalent SDEs/ODEs, demonstrating that

less random noise during sampling can significantly accelerate the process. Additionally,

we leverage the inherent structure of SDEs/ODEs to design a novel sampling scheme to

further expedite the sampling process.

The success of diffusion models [7, 4] also largely be attributed to their scalability. With

large-scale datasets and computing resources, practitioners can usually train high-capacity

models that are able to produce high-fidelity samples. The recent generative AI revolution

led by large-scale text-to-image diffusion models is a great example [11, 19, 20]. Unfor-

tunately, the scalability of diffusion models is not available for every application. There

are many applications where a large-scale dataset of the target content does not exist or is

prohibitively expensive to collect, but individual pieces of the content are available in great

quantities. 360-degree panorama images are such an example. While 360-degree panorama

images are considered niche image content and only exist in small quantities, there are a

large number of normal perspective images available on the Internet, each of which can be

treated as a piece of a 360-degree panorama image. Another example is generating images

of extreme aspect ratios. Each of the extreme-aspect-ratio images can be considered as the

stitching of multiple images with normal aspect ratios. For such applications, while we

cannot afford to collect a large-scale dataset of the target content to train a diffusion model,

we wish to synthesize high-quality target content with a diffusion model trained on smaller

pieces that are readily available. As an effect to tackle the data-hungry issue, we propose a

compositional diffusion model that can be trained on small pieces of the target content and
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then be used to synthesize high-quality target content.

In the last, I also investigate learning SDE with only access to the unnormalized density

of the target distribution. We learn a neural SDE that is able to transform from an original

point into a sample from the target distribution by solving the SDE. Different from MCMC

methods, our method is customized for sampling from a specific distribution. The task-

specific sampling method enjoys better efficiency compared with existing approaches.

1.1 Thesis statement

Stochastic differential equations provide an expressive and efficient representation for prob-

abilistic modeling in high-dimensional data, such as images and video, allowing for the

investigation of the learning, sampling, and inference of underlying distributions.

1.2 Thesis outline

This dissertation is comprised of three thematic parts

Part I focuses on efficient and scalable techniques for learning SDEs parameterized by

neural networks, with the goal to minimize the one marginal distribution of learned SDE

close to the target distribution.

Learning neural SDEs with empirical samples The starting point of my journey start-

ing to derive a new neural SDE that connects data distribution and gaussian distribution.

To this end, we turn neural SDE into a generative model by solving neural SDE with initial

points starting from white noise. We further such an approach can be scaled to medium size

image datasets and achieve better performance than the state-of-the-art generative models

based on neural ODE.

The new generative modeling algorithm resembles and unifies both the flow-based mod-

els and the diffusion models. It extends the normalizing flow method by gradually adding
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noise to the sampling trajectories to make them stochastic. It extends the diffusion model

by making the forward noising process learnable. When added noise shrinks to zero, the

model converges to the normalizing flow model. When the forward process is fixed to some

specific type of diffusion, our algorithm reduces to a diffusion model. The work provides

a unified framework for diffusion models and continuous normalizing flow. This chapter

was previously published as [5].

Learning generative models with pieces data The second problem addressed in my

thesis work is how to build generative models that large content generation where target

data is expensive or even infeasible to collect. To this end, I propose a generic algorithm

that synthesizes large content by merging the results generated by diffusion models trained

on small pieces of the large content. Our approach can synthesize large content efficiently

by generating pieces in parallel. Besides, the new algorithm can work out of the box when

pre-trained diffusion models on different pieces are available.

We conduct extensive experimental results on benchmark datasets to show the effec-

tiveness and versatility of the proposed approaches on various tasks, including generating

infinite long images, complex motions, and 360 images. This chapter was previously pub-

lished as [21].

Learning neural SDEs with unnormalized density We present Path Integral Sampler (PIS),

a novel algorithm to draw samples from unnormalized probability density functions. The

PIS is built on the Schrödinger bridge problem which aims to recover the most likely evo-

lution of a diffusion process given its initial distribution and terminal distribution. The

PIS draws samples from the initial distribution and then propagates the samples through

the Schrödinger bridge to reach the terminal distribution. Applying the Girsanov theorem,

with a simple prior diffusion, we formulate the PIS as a stochastic optimal control problem

whose running cost is the control energy and whose terminal cost is chosen according to

the target distribution. By modeling the control as a neural network, we establish a sam-
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pling algorithm that can be trained end-to-end. We provide theoretical justifications for

the sampling quality of PIS in terms of Wasserstein distance when sub-optimal control is

used. Moreover, the path integrals theory is used to compute the importance weights of

the samples to compensate for the bias induced by the sub-optimality of the controller and

time-discretization. We experimentally demonstrate the advantages of PIS compared with

other start-of-the-art sampling methods on a variety of tasks. This chapter was previously

published as [22].

Part II investigates the challenges of drawing sampling from learned SDE. We specifi-

cally focus on diffusion generative models, where accelerating sampling is crucial due to

the expensive cost of running a large generative neural network. We develop principle and

efficient algorithms to accelerate sampling for isotropic and non-tropic diffusion models.

Accelerating sampling for isotropic diffusion models In this section, we democratize

diffusion models by accelerating their generation. We start with a family of marginal

equivalent SDEs/ODEs associated with diffusion models and investigate numerical error

sources, which include fitting error and discretization error. We observe that even with the

same trained model, different discretization schemes can have dramatically different per-

formances in terms of discretization error. We then carry out a sequence of experiments to

systematically investigate the influences of different factors on the discretization error. We

find out that the Exponential Integrator (EI) [23] that utilizes the semilinear structure of

the backward diffusion has a minimum error. To further reduce the discretization error, we

propose to either use high-order polynomials to approximate the nonlinear term in the ODE

or employ Runge Kutta methods on a transformed ODE. The resulting algorithms termed

Diffusion Exponential Integrator Sampler (DEIS), achieve the best sampling quality with

limited computational resources. This chapter was previously published as [24].
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Accelerating sampling for non-isotropic diffusion models Our goal is to extend the

denoising diffusion implicit model (DDIM) to general diffusion models besides isotropic

diffusions. Instead of constructing a non-Markov noising process as in the original DDIM,

we examine the mechanism of DDIM from a numerical perspective. We discover that the

DDIM can be obtained by using some specific approximations of the score when solving

the corresponding stochastic differential equation. We present an interpretation of the ac-

celerating effects of DDIM that also explains the advantages of a deterministic sampling

scheme over the stochastic one for fast sampling. Building on this insight, we extend DDIM

to general DMs, coined generalized DDIM (gDDIM), with a small but delicate modifica-

tion in parameterizing the scoring network. We validate gDDIM in two non-isotropic DMs:

Blurring diffusion model (BDM) [25, 26] and Critically-damped Langevin diffusion model

(CLD) [27]. This chapter was previously published as [28].

1.3 Contributions

My dissertation makes the following contributions:

• I show neural SDEs can be medium-scale generative models given empirical samples.

The data-driven noising approach of learned SDEs has more flexibility compared

with diffusion models. We also demonstrate the method enjoys better representation

ability than generative models based on neural ODE.

• I introduce a new method to learn diffusion models for large content generation given

only pieces of content. The method can generate large-scale content in parallel.

• I introduce a learning algorithm to learn SDE given only given an unnormalized

target density, which customizes the sampling process of neural SDE to generate

high-quality samples.

• I design efficient solvers that can accelerate the sampling of various diffusion models,

including isotropic diffusion models and non-isotropic diffusion models.
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CHAPTER 2

RELATED WORKS

We set out to provide some background knowledge on probability modeling using stochas-

tic differential equations (SDEs). To begin with, we introduce the concept of learning

probability models with either empirical samples or density that is known up to a normal-

izing constant. Subsequently, we provide a succinct overview of SDEs and their relevance

in learning neural SDEs. We also introduce the concept of diffusion generative models and

their relation to SDEs. Furthermore, we explore the prevalent approaches proposed in the

current literature to tackle the challenges of learning in diverse settings.

2.1 Probability modeling

In this thesis, we investigate methods for modeling probability distributions, with a partic-

ular focus on high-dimensional spaces. This exploration is primarily driven by two preva-

lent tasks in machine learning when dealing with high-dimensional data: generation and

inference. Generation refers to the process of producing novel samples of interest, while

inference involves deriving logical conclusions about the model. Based on the availability

of probability density, probability models can be classified into two categories: explicit and

implicit models.

Explicit models, such as autoregressive models [29, 30, 31] and normalizing flow [6,

32], enable us to query the density of data samples. In contrast, implicit models, including

generative adversarial networks (GANs)[17] and variational autoencoders (VAEs) [33], do

not allow us to directly query the exact density of data samples, despite being able to draw

samples from them.

To learn probability models, we can either learn the model from data or learn it from a

given density function. In this regard, we first formulate the problem of learning from data.
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Let x1,x2,x3, · · · ,xN denote a dataset D of size N . A widely accepted assumption

in machine learning is that the data points xi are independent and identically distributed

(i.i.d.) from an underlying probability distribution pdata(x).

To learn a probability model, we first construct a parametric model pθ(x), where θ ∈ Θ

denotes the parameters of the model and Θ represents all possible parameter values. Our

objective is to learn a probability model pθ∗(x) that approximates pdata(x) as closely as

possible, given the dataset D. This enables us to generate samples from pθ∗(x) and infer

properties of pdata(x) via the proxy pθ∗(x). Such probability models are also known as

generative models in machine learning literature.

Alternatively, we may encounter a scenario where we are provided with a density func-

tion p̂(x) = Zpdata(x) known up to a normalizing constant Z. Although it is possible to

evaluate the probability value p̂(x′) of any arbitrary data point x′, generating asymptot-

ically unbiased samples from such an unnormalized distribution can be challenging [34].

We aim to learn a probability model pθ∗(x) that closely approximates the target distribution

but is also easy to sample from and infer its properties. In the machine learning literature,

the technique of constructing a proxy distribution to draw samples is known as variational

inference [35, 36].

There are various representation choices for probability modeling. In this thesis, we

focus on techniques based on SDEs. We include existing alternative methods and a more

in-depth discussion and comparison in Sec. 2.4.

2.2 Stochastic differential equations

A stochastic differential equation (SDE) with D-dimensional states has the form [37]

dx = F (x, t)dt+G(x, t)dw, (2.1)
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where F (x, t) : RD × R → RD denotes the drift term, G(x, t) : RD × R → RD de-

notes the diffusion term, and w is a standard Wiener process. SDEs are commonly used

to model systems that evolve with uncertainty and randomness, and to transform one prob-

ability distribution into another. In recent years, there has been growing interest among

machine learning researchers in incorporating neural networks into SDEs to model com-

plex stochastic processes [2, 38, 39]. In this approach, the drift and diffusion functions of

the SDEs are defined by neural networks. However, in most existing works, it is necessary

to solve the SDEs during training, which makes the gradient calculation of fitting neural

SDEs notoriously difficult and challenging. Memory and computation time of simply dif-

ferentiating through the operation of SDE solvers [40] scales linearly with the number of

time steps of SDE solvers. Another attempt based on forward pathwise methods [41, 42]

scales poorly in computational time with the number of parameters and states in the model.

Inspired by the success of Neural Ordinary Differential Equations (Neural ODEs) [32], [1]

generalized the scalable adjoint sensitivity method to SDEs. The adjoint method allows

time-efficient and constant-memory computation of the gradient of the loss function with

respect to the parameters of the neural network. To retrace trajectories, authors cached the

randomness of SDEs in a Brownian Tree. Taking advantage of splittable pseudorandom

number generators [43], the adjoint method can reconstruct the Brownian Tree in an online

fashion by only storing a random seed. The adjoint method is further improved by an effi-

cient data structure, named Brownian Interval [44]. Despite recent advancements, training

neural SDEs remains challenging and existing works mainly focus on toy problems and

low dimensional data [1, 44].

2.3 Diffusion generative models as SDEs

Diffusion generative models [45] is a highly successful class of probability models that

learn empirically and are capable of generating high-fidelity samples through iterative re-

finement. These models fit a target distribution through the use of two Markov chains.
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The first Markov chain is a forward process that gradually converts observed data x0 into

noisy data xT through a series of random transformations q(xt|xt−1) so that xT is close

to a simple prior distribution, typically xT ∼ N (0, I). The second Markov chain is a re-

verse process that reconstructs the original data x0 from the noisy data xT using a series of

decoders pθ(xt|xt+1) such that the generated x0 is close to the observed data distribution

pdata(x).

In a similar vein, another closely related area of research involves score-based genera-

tive models that estimate the score,∇ log qt(x), which is the gradient of the log-likelihood,

at each noise scale. These models use Langevin dynamics to sample from a sequence of

decreasing noise scales [46, 47].

It has been demonstrated that diffusion generative models and score-based generative

models can be unified into a single framework by utilizing different parameterizations of

stochastic differential equations (SDEs) [4]. Specifically, this framework consists of a for-

ward SDE and a backward SDE. The forward SDE is a simple linear SDE without learnable

parameters, given by:

dx = Ftxdt+Gtdw, (2.2)

where Ft ∈ RD×D denotes the linear drift coefficient and Gt ∈ RD×D denotes the diffusion

coefficient.

The diffusion model given by Eq. (2.2) is initialized at the training data and simulated

over a fixed time window [0, T ]. Let pt(xt) denote the marginal distribution of xt and

p0t(xt|x0) denote the conditional distribution from x0 to xt. Here, p0(x0) represents the

underlying distribution of the training data pdata(x). The simulated trajectories are repre-

sented by xt0 ≤ t ≤ T . The parameters Ft and Gt are chosen such that the conditional

marginal distribution p0t(xt|x0) is a simple Gaussian distribution denoted asN (µtx0,Σt).

Additionally, the distribution π(xT ) := pT (xT ) is chosen to be easy to sample from. The

denoising diffusion probabilistic models [45](DDPM) and Noise Conditional Score Net-

works(NCSN)[46] can be formulated by choosing the parameterization shown inTab. 2.1,
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Table 2.1: Two popular SDEs, variance preserving SDE (VPSDE) and variance exploding
SDE (VESDE). The parameter αt is decreasing with α0 ≈ 1, αT ≈ 0, while σt is increas-
ing.

SDE Ft Gt µt Σt

VPSDE (DDPM) [7, 4] 1
2
d logαt

dt
I

√
−d logαt

dt
I
√
αtI (1− αt)I

VESDE (NCSN) [46, 4] 0
√

d[σ2
t ]

dt
I I σ2

t I

which unifies the diffusion generative models and score-based generative models based on

SDEs.

Under mild assumptions [48, 4], the forward diffusion process given by Eq. (2.2) is

associated with a reverse-time diffusion process, described by

dx = [Ftxdt−GtG
T
t ∇ log pt(x)]dt+Gtdw, (2.3)

where w denotes a standard Wiener process in the reverse-time direction. The distribution

of trajectories generated by Eq. (2.3) with terminal distribution xT ∼ π is identical to that

generated by Eq. (2.2) with initial distribution x0 ∼ p0. This means that Eq. (2.3) matches

Eq. (2.2) in probability law. Eq. (2.3) represents an ideal generative model for the data

distribution pdata(x) and can be used to generate samples from the data distribution by

solving Eq. (2.3) backward in time.

The key concept in training diffusion models is the use of a time-dependent network

sθ(x, t), called a score network, to approximate the score ∇ log pt(x). This is achieved

through score matching techniques [49, 50], where the score network sθ is trained by min-

imizing the denoising score matching loss defined as

L(θ) = Et∼Unif[0,T ]Ep(x0)p0t(xt|x0)[∥∇ log p0t(xt|x0)− sθ(xt, t)∥2Λt
], (2.4)

where∇ log p0t(xt|x0) has a closed-form expression since p0t(xt|x0) is a simple Gaussian

distribution. Here, Λt is a time-dependent weight. This loss can be evaluated using em-
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pirical samples through Monte Carlo methods, allowing for the use of standard stochastic

optimization algorithms for training.

Unlike previous neural SDE works [1], diffusion models aim to match the distribution

of the backward SDE to that of the forward SDE, rather than specific data trajectories.

Thanks to the simple linear SDE, the training objective in Eq. (2.4) is straightforward as a

supervised regression problem, making it highly scalable.

2.4 Existing methods

In this section, we provide an overview of popular alternative methods for probability mod-

eling and discuss their advantages and disadvantages.

2.4.1 Autoregressive models

Representation Autoregressive models [29, 30, 31] are a widely used approach for ex-

plicit probability modeling. Autoregressive models are constructed based on the probability

chain rule, which states that the probability of a data point x can be decomposed into the

product of the probabilities of each dimension conditioned on the previous dimensions.

More formally, this can be written as:

pθ(x) =
D∏
i=1

pθ(xi|x<i), (2.5)

where D is the dimensionality of the data x, xi denotes the i-th element of x, and x<i

denotes the elements before the i-th element of x, i.e., x1,x2, · · · ,xi−1. Eq. (2.5) pro-

vides a natural way to model the data distribution by modeling the conditional distribution

pθ(xi|x<i) for each dimension i, which is further modeled by using exponential family

distributions, such as multinomial or mixture of Gaussian, on top of neural networks.

Learning As autoregressive models are based on the chain rule for probability modeling,

practitioners can use maximum likelihood estimation to learn the parameters θ of the model.
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The maximum likelihood estimation is achieved by maximizing the following likelihood

function:

θ∗ = argmax
θ

D∑
i=1

log pθ(xi|x<i). (2.6)

Sampling Sampling from autoregressive models is a straightforward process. Firstly, we

draw samples for x1 from pθ(x1). Next, we sample the next element x2 by sampling from

pθ(x2|x<2 = x1), and so on. This process can be repeated for pθ(xi|x<i) until we have

generated a sample x of the same dimension as the data.

Discussion The training objective of autoregressive models given in Eq. (2.6) is highly

scalable and is employed to train large generative models, such as the ones used in language

modeling with billions of parameters [51].

While autoregressive models are popular for explicit probability modeling, they require

a particular order of data dimensions. However, not all data domains have a natural ordering

of dimensions. For instance, in the image domain, it is unclear what a good ordering

of pixels would be. Moreover, the autoregressive properties and strict ordering limit the

design space of neural networks to specific architectures, such as masked convolutional

networks [31] and causal attention [52].

2.4.2 Variational autoencoders

Representation A variational autoencoder (VAE) [33] is a latent variable model by aug-

menting the data distribution p(x) with a prior distribution p(z), which is usually a simple

distribution to draw samples and evaluating density, such as a Gaussian distribution. To

model probability, a VAE replies on an encoder pθ(z|x). The encoder is a neural net-

work that maps the data x to a latent variable z. Therefore, the probability model can be

formulated as

pθ(x) =

∫
pθ(x|z)p(z)dz, (2.7)
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which can be interpreted as an infinite mixture of Gaussian distributions.

Learning Although Eq. (2.7) provides a possibility to evaluate the probability of data, it

is intractable in practice since the integral Eq. (2.7) is intractable. Instead of maximizing

the probability of data exactly, VAEs maximize the evidence lower bound (ELBO) of the

data distribution p(x), which reads

log pθ(x) = log

∫
pθ(x|z)p(z)dz

= log

∫
qϕ(z|x)

pθ(x|z)p(z)
qϕ(z|x)

dz

≥
∫
qϕ(z|x) log

pθ(x|z)p(z)
qϕ(z|x)

dz

= Eqϕ(z|x) [log pθ(x|z) + log p(z)− log qϕ(z|x)]

= Eqϕ(z|x) [log pθ(x|z)]−DKL [qϕ(z|x)||p(z)] , (2.8)

where qϕ(z|z) is the encoder, which is particularly helpful for evaluating the lower bound

of the data likelihood.

Sampling Sampling from Variational Autoencoders (VAEs) is a simple process owing

to the manageable prior distribution p(z) and the decoder pθ(x|z). First, samples are

drawn from the prior distribution p(z), after which the latent variable z is decoded into the

corresponding data x using the decoder pθ(x|z).

Discussions VAEs exhibit a high degree of versatility in modeling intricate data distribu-

tions, and the architecture of neural networks used to build them is flexible. Nevertheless,

VAEs have several limitations that hinder their scalability to high-dimensional data with

good quality. Firstly, the optimal decoder for a given encoder qθ is a weighted average of

the data, expressed as

Epdata(x)[
qθ(z|x)

Epdata [qθ(z|x)]
x],
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which inevitably results in a blurry reconstruction unless the encoder is a delta function.

Secondly, it has been observed that VAE encoders may neglect the data and instead concen-

trate solely on the prior distribution p(z), resulting in posterior collapse. Researchers have

found that utilizing a richer and more expressive prior distribution p(z) can alleviate this

issue. However, training deep VAEs with complex prior distributions remains a challenging

and active area of research [53, 54].

2.4.3 Normalizing Flows

Representation Normalizing flows are a popular choice for explicit probability mod-

eling. They connect a simple distribution π(z) to a complex distribution p(x) through

an invertible transformation x = fθ(z), where θ is the parameter of the transformation.

The key component of a normalizing flow is the continuously differentiable transformation

fθ : RD → RD implemented using a deep neural network. By applying the change of

variable formula, a normalizing flow models the probability of data as

pθ(x) =
π(f−1

θ (x))∣∣∣det ∂fθ(z)
∂z

∣∣∣ . (2.9)

Learning In order to fit a normalizing flow to data, we aim to maximize the log-likelihood

of the data, which can be written as

θ∗ = argmax
θ

log pθ(x). (2.10)

Sampling Sampling from a normalizing flow follows a similar process to that of VAEs.

Firstly, samples are drawn from the prior distribution π(z), which are then transformed into

the data space x using fθ(z).

Discussions The use of a bijective transformation fθ in normalizing flows allows for effi-

cient evaluation of data probabilities and sampling from the model. However, learning such
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a transformation is a challenging task, as the bijective property places restrictions on the

design space of neural network architectures. Moreover, normalizing flows require the de-

terminant of the Jacobian matrix to be tractable, which further limits the space of possible

neural network designs.

2.4.4 Generative adversarial networks

Representation Generative adversarial networks (GANs) offer a direct approach to mod-

eling the sampling process, circumventing the challenges associated with modeling a dis-

tribution and density querying. GANs operate by first drawing a sample z from a prior

distribution π(z). Then, a generator function Gθ : Rm → Rn transforms the sample z

into the generated data x. Unlike other generative models, GANs implicitly model the

distribution pθ(x) through π(z) and Gθ(z).

Learning To fit a GAN to data, we resort to an auxiliary model critic Dϕ(x), which is

a binary classifier that is learned to distinguish between real data x and fake data Gθ(z).

Therefore, the criticDϕ and deterministic mappingGθ are trained in an adversarial manner,

resulting in a two-player game. Specifically, the training objective is given by

min
θ

max
ϕ

Ex∼pdata(x) [logDϕ(x)] + Ez∼π(z) [log(1−Dϕ(Gθ(z)))] . (2.11)

Discussions GANs enjoys several merits. First, the sampling procedure of GANs is effi-

cient. Second, GANs have a flexible design space. GANs can be built with flexible deep

neural networks and show better sampling performance than VAEs and normalizing flows.

However, GANs can not estimate the density of given data samples and it is difficult to in-

fer latent variables from data samples. Moreover, the training objective in Eq. (2.11) is not

stable and demands careful hyperparameter tuning and advanced optimization techniques.
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CHAPTER 3

LEARNING NEURAL SDES WITH EMPIRICAL SAMPLES

3.1 Introduction

Generative model is a class of machine learning models used to estimate data distributions

and sometimes generate new samples from the distributions [55, 56, 57, 58, 59]. Many

generative models learn the data distributions by transforming a latent variable z with a

tractable prior distribution to the data space [55, 56, 60]. To generate new samples, one can

sample from the latent space and then follow the transformation to the data space. There

exist a large class of generative models where the latent space and the data space are of the

same dimension. The latent variable and the data are coupled through trajectories in the

same space. These trajectories serve two purposes: in the forward direction x → z, the

trajectories infer the posterior distribution in the latent space associated with a given data

sample x, and in the backward direction z → x, it generates new samples by simulating

the trajectories starting from the latent space. This type of generative model can be roughly

divided into two categories, depending on whether these trajectories connecting the latent

space and the data space are deterministic or stochastic.

When deterministic trajectories are used, these generative models are known as flow-

based models. The latent space and the data space are connected through an invertible map,

which could either be realized by the composition of multiple invertible maps [56, 55, 61]

or a differential equation [62, 63]. In these models, the probability density at each data point

can be evaluated explicitly using the change of variable theorem, and thus the training can

be carried out by minimizing the negative log-likelihood (NLL) directly. One limitation

of the flow-based model is that the invertible map parameterized by neural networks used

in it imposes topological constraints on the transformation from z to x. Such limitation
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affects the performance significantly when the prior distribution on z is a simple unimodal

distribution such as Gaussian while the target data distribution is a well-separated multi-

modal distribution, i.e., its support has multiple isolated components. In [64], it is shown

that there are some fundamental issues of using well-conditioned invertible functions to

approximate such complicated multi-modal data distributions.

When stochastic trajectories are used, the generative models are often known as the

diffusion model [65]. In a diffusion model, a prespecified stochastic forward process grad-

ually adds noise into the data to transform the data samples into simple random variables.

A separate backward process is trained to revert this process to gradually remove the noise

from the data to recover the original data distributions. When the forward process is mod-

eled by a stochastic differential equation (SDE), the optimal backward SDE [66] can be

retrieved by learning the score function [67, 68, 7, 69]. When the noise is added to the data

sufficiently slow in the forward process, the backward diffusion can often revert the forward

one reasonably well and is able to generate high fidelity samples. However, this also means

that the trajectories have to be sufficiently long with a large number of time-discretization

steps, which leads to slow training and sampling. In addition, since the forward process is

fixed, the way noise is added is independent of the data distribution. As a consequence, the

learned model may miss some complex but important details in the data distribution, as we

will explain later.

In this work, we present a new generative modeling algorithm that resembles both the

flow-based models and the diffusion models. It extends the normalizing flow method by

gradually adding noise to the sampling trajectories to make them stochastic. It extends

the diffusion model by making the forward process from x to z trainable. Our algorithm is

thus termed Diffusion Normalizing Flow (DiffFlow). The comparisons and relations among

DiffFlow, normalizing flow, and diffusion models are shown in Figure Figure 3.1. When

the noise in DiffFlow shrinks to zero, DiffFlow reduces to a standard normalizing flow.

When the forward process is fixed to some specific type of diffusion, DiffFlow reduces to
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a diffusion model.
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Figure 3.1: The schematic diagram for normalizing flows, diffusion models, and DiffFlow.
In normalizing flow, both the forward and the backward processes are deterministic. They
are the inverse of each other and thus collapse into a single process. The diffusion model
has a fixed forward process and trainable backward process, both are stochastic. In Diff-
Flow, both the forward and the backward processes are trainable and stochastic.

In DiffFlow, the forward and backward diffusion processes are trained simultaneously

by minimizing the distance between the forward and the backward process in terms of the

Kullback-Leibler (KL) divergence of the induced probability measures [70]. This cost turns

out to be equivalent to (see Section section 3.3 for a derivation) the (amortized) negative

evidence lower bound (ELBO) widely used in variational inference [71]. One advantage to

use the KL divergence directly is that it can be estimated with no bias using sampled trajec-

tories of the diffusion processes. The KL divergence in the trajectory space also bounds the

KL divergence of the marginals, providing an alternative method to bound the likelihood

(see Section section 3.3 for details). To summarize, we have made the following contribu-

tions.

1. We propose a novel density estimation model termed diffusion normalizing flow (Diff-

Flow) that extends both the flow-based models and the diffusion models. The added

stochasticity in DiffFlow boosts the expressive power of the normalizing flow and results

in better performance in terms of sampling quality and likelihood. Compared with diffu-

sion models, DiffFlow is able to learn a forward diffusion process to add noise to the data

adaptively and more efficiently. This avoids adding noise to regions where noise is not so
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desirable. The learnable forward process also shortens the trajectory length, making the

sampling much faster than standard diffusion models (We observe a 20 times speedup over

diffusion models without decreasing sampling quality much).

2. We develop a stochastic adjoint algorithm to train the DiffFlow model. This algorithm

evaluates the objective function and its gradient sequentially along the trajectory. It avoids

storing all the intermediate values in the computational graph, making it possible to train

DiffFlow for high-dimensional problems.

3. We apply the DiffFlow model to several generative modeling tasks with both synthetic

and real datasets, and verify the performance of DiffFlow and its advantages over other

methods.

3.2 Background

Below we provide a brief introduction to normalizing flows and diffusion models. In both

of these models, we use τ = {x(t), 0 ≤ t ≤ T} to denote trajectories from the data

space to the latent space in the continuous-time setting, and τ = {x0,x1, · · · ,xN} in the

discrete-time setting.

Normalizing Flows: The trajectory in normalizing flows is modeled by a differential

equation

ẋ = f(x, t, θ), (3.1)

parameterized by θ. This differential equation starts from random x(0) = x and ends

at x(T ) = z. Denote by p(x(t)) the probability distribution of x(t), then under mild

assumptions, it evolves following [62]

∂ log p(x(t))

∂t
= −tr(

∂f

∂x
). (3.2)

Using this relation equation Equation 3.1 equation Equation 3.2 one can compute the like-

lihood of the model at any data point x.
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In the discrete-time setting, the map from x to z in normalizing flows is a composition

of a collection of bijective functions as F = FN ◦ FN−1 · · ·F2 ◦ F1. The trajectory τ =

{x0,x1, · · · ,xN} satisfies

xi = Fi(xi−1, θ), xi−1 = F−1
i (xi, θ) (3.3)

for all i. Similar to Equation equation Equation 3.2, based on the rule for change of variable,

the log-likelihood of any data samples x0 = x can be evaluated as

log p(x0) = log p(xN)−
N∑
i=1

log |det(
∂F−1

i (xi)

∂xi

)|. (3.4)

Since the exact likelihood is accessible in normalizing flows, these models can be trained

by minimizing the negative log-likelihood directly.

Diffusion Models: The trajectories in diffusion models are modeled by stochastic dif-

ferential equations. More explicitly, the forward process is of the form

dx = f(x, t)dt+ g(t)dw, (3.5)

where the drift term f : Rd × R → Rd is a vector-valued function, and the diffusion co-

efficient g : R → R is a scalar function (in fact, g is often chosen to be a constant). Here

w denotes the standard Brownian motion. The forward process is normally a simple linear

diffusion process [65, 57]. The forward trajectory τ can be sampled using equation Equa-

tion 3.5 initialized with the data distribution. Denote by pF the resulting probability distri-

bution over the trajectories. With a slight abuse of notation, we also use pF to denote the

marginal distribution of the forward process.

The backward diffusion from z = x(T ) to x = x(0) is of the form

dx = [f(x, t)− g2(t)s(x, t, θ)]dt+ g(t)dw. (3.6)
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It is well-known that when s coincides with the score function ∇ log pF , and x(T ) in the

forward and backward processes share the same distribution, the distribution pB induced

by the backward process equation Equation 3.6 is equal to pF [66],[72, Chapter 13]. To

train the score network s(x, t, θ), one can use the KL divergence between pF and pB as

an objective function to reduce the difference between pF and pB. When the difference is

sufficiently small, pF and pB should have similar distribution over x(0), and one can then

use the backward diffusion equation Equation 3.6 to sample from the data distribution.

In the discrete setting, the trajectory distributions can be more explicitly written as

pF (τ) = pF (x0)
N∏
i=1

pF (xi|xi−1), pB(τ) = pB(xT )
N∏
i=1

pB(xi−1|xi). (3.7)

The KL divergence between pF and pB can be decomposed according to this expression

equation Equation 3.7. Most diffusion models use this decomposition, and meanwhile take

advantage of the simple structure of the forward process equation Equation 3.5, to evaluate

the objective function in training [67, 68, 73].

3.3 Diffusion normalizing flow

We next present our diffusion normalizing flow models. Similar to diffusion models, the

DiffFlow models also has a forward process

dx = f(x, t, θ)dt+ g(t)dw, (3.8)

and a backward process

dx = [f(x, t, θ)− g2(t)s(x, t, θ)]dt+ g(t)dw. (3.9)

The major difference is that, instead of being a fixed linear function as in most diffusion

models, the drift term f is also learnable in DiffFlow. The forward process is initialized
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with the data samples at t = 0 and the backward process is initialized with a given noise

distribution at t = T . Our goal is to ensure the distribution of the backward process at time

t = 0 is close to the real data distribution. That is, we would like the difference between

pB(x(0)) and pF (x(0)) to be small.

To this end, we use the KL divergence between pB(τ) and pF (τ) over the trajectory

space as the training objective function. Since

KL(pF (x(t))|pB(x(t))) ≤ KL(pF (τ)|pB(τ)) (3.10)

for any 0 ≤ t ≤ T by data processing inequality, small difference between pB(τ) and pF (τ)

implies small difference between pB(x(0)) and pF (x(0)) in terms of KL divergence.

3.3.1 Implementation

In real implementation, we discretize the forward process equation Equation 3.8 and the

backward process equation Equation 3.9 as

xi+1 = xi + fi(xi)∆ti + giδ
F
i

√
∆ti (3.11)

xi = xi+1 − [fi+1(xi+1)− g2i+1si+1(xi+1)]∆ti + gi+1δ
B
i

√
∆ti, (3.12)

where δFi , δ
B
i ∼ N (0, I) are unit Gaussian noise, {ti}Ni=0 are the discretization time points,

and ∆ti = ti+1 − ti is the step size at the i-th step. Here we have dropped the dependence

on the parameter θ to simplify the notation. With this discretization, the KL divergence

between trajectory distributions becomes

KL(pF (τ)|pB(τ)) = Eτ∼pF [log pF (x0)︸ ︷︷ ︸
L0

]+Eτ∼pF [− log pB(xN)︸ ︷︷ ︸
LN

]+
N−1∑
i=1

Eτ∼pF [log
pF (xi|xi−1)

pB(xi−1|xi)︸ ︷︷ ︸
Li

].

(3.13)

The term L0 in equation Equation 3.13 is a constant determined by entropy of the
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dataset as

Eτ∼pF [log pF (x0)] = Ex0∼pF [log pF (x0)] =: −H(pF (x(0))).

The term LN is easy to calculate since pB(xN) is a simple distribution, typically standard

Gaussian distribution.

To evaluate L1:N−1, we estimate it over sampled trajectory from the forward process pF .

For a given trajectory τ sampled from pF (τ), we need to calculate pB(τ) along the same

trajectory. To this end, a specific group of {δBi } is chosen such that the same trajectory can

be reconstructed from the backward process. Thus, δBi satisfies

δBi (τ) =
1

gi+1

√
∆t

[
xi − xi+1 + [fi+1(xi+1)− g2i+1si+1(xi+1)]∆t

]
. (3.14)

Since δBi is a Gaussian noise, the negative log-likelihood term pB(xi|xi+1) is equal to

1
2
(δBi (τ))

2 after dropping constants. In view of the fact that the expectation of
∑

i
1
2
(δFi (τ))

2

remains a constant, minimizing Equation equation Equation 3.13 is equivalent to minimiz-

ing the following loss:

L := Eτ∼pF [− log pB(xN)+
∑
i

1

2
(δBi (τ))

2] = EδF ;x0∼p0 [− log pB(xN)+
∑
i

1

2
(δBi (τ))

2],

(3.15)

where the last equality is based on a reparameterization trick [71]. We can minimize the

loss in Equation equation Equation 3.15 with Monto Carlo gradient estimation as in Algo-

rithm Algorithm 1.

3.3.2 Stochastic Adjoint method

One challenge in training DiffFlow is memory consumption. When a naive backpropa-

gation strategy is used, the memory consumption explodes quickly. Indeed, differentiating

through the operations of the forward pass requires unrolling networksN times and caching
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Algorithm 1 Training
repeat

x0 ∼ Real data distribution
δF1:N ∼ N (0, I)
Discrete timestamps: tNi=0

Sample: τ = {xi}Ni=0 based on δF1:N
Gradient descent step∇θ[− log pB(xN) +

∑
i
1
2
(δBi (τ))

2]
until converged

all network intermediate values for every step, which prevents this naive implementation

of DiffFlow from being applied in high dimensional applications. Inspired by the adjoint

method in Neural ODE [62], we propose the adjoint variable ∂L
∂xi

and a stochastic adjoint

algorithm that allows training the DiffFlow model with reduced memory consumption. In

this adjoint method, we cache intermediate states xi and, based on these intermediate states,

reproduce the whole process, including δFi , δ
B
i as well as fi, si exactly.

We note another similar approach [1] of training SDEs caches random noise dw and

further takes advantage of the pseudo-random generator to save memory for the interme-

diate noises, resulting in constant memory consumption However, the approach can not

reproduce exact trajectories due to time discretization error and requires extra computation

to recover dw from the pseudo-random generator. We found that in our image experi-

ments in Section section 3.4, the cached {xi} consumes only about 2% memory out of

all the memory being used during training. Due to the accuracy and acceptable memory

overhead, the introduced stochastic adjoint approach is a better choice for DiffFlow. We

summarize the method in Algorithm Algorithm 2 and Figure Figure 3.2. We also include

the PyTorch [74] implementation in the supplemental material.
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Figure 3.3: ∆ti of Lβ and L̂β

Algorithm 2 Stochastic Adjoint Algorithm for DiffFlow

1: Input: Forward trajectory {xi}Ni=0

2: ∂L
∂xN

= 1
2

∂(δBN (τ))2

∂xN
− ∂ log pB(xN )

xN

3: ∂L
∂θ

= 0

4: for i = N,N − 1, · · · , 1 do

5: ∂L
∂xi−1

= ( ∂L
∂xi

+ 1
2

∂(δBi (τ))2

∂xi
) ∂xi

∂xi−1
+ 1

2

∂(δBi (τ))2

∂xi−1

6: ∂L
∂θ

+ = 1
2

∂(δBi (τ))2

∂θ
+ ( ∂L

∂xi
+ 1

2

∂(δBi (τ))2

∂xi
)∂xi

∂θ

7: end for

xi−1 xi

δBi

f

f − g2s

δFi

Forward pass
Backpropagation

Figure 3.2: Gradient Flowchart.

3.3.3 Time discretization and progressive training

We propose two time discretization schemes for training DiffFlow: fixed timestamps Lβ

and flexible timestamps L̂β . For fixed timestamps, the time interval [0, T ] is discretized

with fixed schedule ti = ( i
N
)βT . With such fixed time discretization over batches, we
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denote the loss function as Lβ . Empirically, we found β = 0.9 works well. This choice

of β increases stepsize ∆ti when the forward process approaches z = xN and provides

higher resolution when the backward process is close to x0. We found such discretization

generates samples with good quality and high fidelity details. The choice of polynomial

function is arbitrary; other functions of similar sharps may work as well.

In the flexiable timestamps scheme, we train different batches with different time dis-

cretization points. Specifically, ti is sampled uniformly from the interval [( i−1
N−1

)βT, ( i
N−1

)βT ]

for each batch. We denote the training objective function with such random time discretiza-

tion as L̂β . We empirically found such implementation results in lower loss and better

stability when we conduct progressive training where we increase N gradually as training

progresses. In progressive training, we refine the forward and backward processes as N

increase. This training scheme can significantly save training time compared with the other

method that uses a fixed large N during the whole process. Empirically, we found that

progressive training can speed up the training up to 16 times.

To understand why such random time discretization scheme is more stable, we hypoth-

esis that this choice encourages a smoother f , s since it seeks functions f , s to reduce

objective loss under different sets of {ti} instead of a specific {ti}. We illustrate fixed

timestamps in Lβ and a realization of random discretization in L̂β in Figure Figure 3.3 with

β = 0.9.

3.3.4 Learnable forward process

The forward process not only is responsible for driving data into latent space, but also

provides enough supervised information to learning backward process. Thanks to bi-

jective property, NFs can reconstruct data exactly but there is no guarantee that it can

reach the standard Gaussian. At the other extreme, Denoising diffusion probabilistic mod-

els (DDPM) [7] adopt a data-invariant forward diffusing schema, ensuring that xN is Gaus-

sian. DDPM can even reach Gaussian in one step with N = 1, which output noise disre-
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Figure 3.4: Illustration of forwarding trajectories of DiffFlow, DDPM, and FFJORD. Each
row shows two trajectories of transforming data distributions, four rings, and Olympics
rings, to a base distribution. Different modes of densities are in different colors. Though
FFJORD adjusts forward process based on data, its bijective property prevents the approach
from expanding density support to the whole space. DDPM can transform data distribu-
tions into Gaussian distribution but a data-invariant way of adding noise can corrupt the
details of densities, e.g., the densities at the intersections of the rings. DiffFlow not only
transforms data into base distribution but also keeps the topological information of the orig-
inal datasets. Points from the same ring are transformed into continental plates instead of
being distributed randomly.

garding data samples. However, backward process will be difficult to learn if data is de-

stroyed in one step. Therefore, DDPM adds noise slowly and often needs more than one

thousand steps for diffusion.

The forward module of DiffFlow is a combination of normalizing flow and diffusion

models. We show the comparision in fitting toy 2D datasets in Figure Figure 3.4. We

are especially interested in data with well-separated modes and sharp density boundaries.

Those properties are believed to appear in various datasets. As stated by manifold hy-

pothesis [75], real-world data lie on low-dimensional manifold [76] embedded in a high-

dimensional space. To construct the distributions in Figure Figure 3.4, we rotate the 1-d

Gaussian distribution N (1, 0.0012) around the center to form a ring and copy the rings to

different locations.

As a bijective model, FFJORD [63] struggles to diffuse the concentrated density mass

into a Gaussian distribution. DiffFlow overcomes expressivity limitations of the bijective

constraint by adding noise. As added noise shrinks to zero, the DiffFlow has no stochas-
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ticity and degrades to a flow-based model. Based on this fact, we present the following

theorem.

Theorem 1. As diffusion coefficients gi → 0, DiffFlow reduces to Normalizing Flow. More-

over, minimizing the objective function in Equation equation Equation 3.13 is equivalent to

minimizing the negative log-likelihood as in Equation equation Equation 3.4.

DDPM [7] uses a fixed noising transformation. Due to the data-invariant approach

p(xT |x0) = p(xT ), points are diffused in the same way even though they may appear in

different modes or different datasets. We observe that sharp details are destroyed quickly in

DDPM diffusion, such as the intersection regions between rings. However, with the help of

learnable transformation, DiffFlow diffuses in a much efficient way. The data-dependent

approach shows different diffusion strategies on different modes and different datasets.

Meanwhile, similar to NFs, it keeps some topological information for learning backward

processes. We include more details about the toy sample in Section section 3.4.

3.4 Experiments

We evaluate the performance of DiffFlow in sample quality and likelihood on test data. To

evaluate the likelihood, we adopt the marginals distribution equivalent SDEs

dx = [f(x, t, θ)− 1 + λ2

2
g2(t)s(x, t, θ)]dt+ λg(t)dw, (3.16)

with λ ≥ 0. When λ = 0, it reduces to probability ODE [73]. The ODE provides an

efficient way to evaluate the density and negative log-likelihood. For any 0 ≤ λ ≤ 1,

the above SDE can be used for sampling. Empirically, we found λ = 1 has the best

performance.
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3.4.1 Synthetic 2D examples

We compare the performance of DiffFlow and existing diffusion models and NFs on esti-

mating the density of 2-dimensional data. We compare the forward trajectories of DiffFlow,

DDPM [7] and FFJORD [63]1 in Figure Figure 3.4 and its sampling performance in Fig-

ure Figure 3.5. To make a fair comparison, we build models with comparable network

sizes, around 90k learnable parameters.

All three algorithms have good performance on datasets whose underlying distribution

has smooth density, such as 2 spirals. However, when we shrink the support of samples

or add complex patterns, performance varies significantly. We observe that FFJORD leaks

many samples out of the main modes and datasets with complex details and sharp density

exacerbates the disadvantage.

DDPM has higher sample quality but blurs density details, such as intersections be-

tween rings, areas around leaves of the Fractal tree, and boxes in Sierpiński Carpet. The

performance is within expectation given that details are easy to be destroyed and ignored

with the data-invariant noising schema. On the less sharp dataset, such as 2 Spirals and

Checkerboard, its samples align with data almost perfectly.

DiffFlow produces the best samples (according to a human observer). We owe the

performance to the flexible noising forward process. As illustrated in Figure Figure 3.4,

DiffFlow provides more clues and retains detailed patterns longer for learning its reverse

process. DiffFlow has a much lower negative likelihood, especially on sharp datasets.

3.4.2 Density estimation on real data

We perform density estimation experiments on five tabular datasets [77]. We employ the

probability flow to evaluate the negative log-likelihood. We find that our algorithm has

better performance in most datasets than most approaches trained by directly minimizing

negative log-likelihood, including NFs and autoregressive models. DiffFlow outperforms

1Implementation of FFJORD and DDPM are based on official codebases.
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Figure 3.5: Samples from DiffFlow, DDPM and FFJORD on 2-D datasets. All three models
have reasonable performance on datasets that have smooth underlying distributions. But
only DiffFlow is capable to capture complex patterns and provides sharp samples when
dealing with more challenging datasets.

FFJORD by a wide margin on all datasets except HEPMASS. Compared with autoregres-

sive models, it excels NAF [78] on all but GAS. Those models require O(d) computations

to sample from. Meanwhile, DiffFlow is quite effective in achieving such performance

with MLPs that have less than 5 layers.

3.4.3 Image generation

In this section, we report the quantitative comparison and qualitative performance of our

method and existing methods on common image datasets, MNIST [81] and CIFAR-10 [82].

We use the same unconstrained U-net style model as used successfully by [7] for drift and

score network. We reduce the network size to half of the original DDPM network so that

the total number of trainable parameters of DiffFlow and DDPM are comparable. We use

small N = 10 at the beginning of training and slowly increase to large N as training

proceeds. The schedule of N reduces the training time greatly compared with using large

N all the time. We use constants gi = 1 and T = 0.05 for MNIST and CIFAR10, and

N = 30 for sampling MNIST data and N = 100 for sampling CIFAR10. As it is reported
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Table 3.1: Average negative log-likelihood (in nats) on tabular datasets [77] for density
estimation (lower is better).

Dataset POWER GAS HEPMASS MINIBOONE BSDS300

RealNVP [55] -0.17 -8.33 18.71 13.55 -153.28
FFJORD [63] -0.46 -8.59 14.92 10.43 -157.40
DiffFlow (ODE) -1.04 -10.45 15.04 8.06 -157.80

MADE [79] 3.08 -3.56 20.98 15.59 -148.85
MAF [77] -0.24 -10.08 17.70 11.75 -155.69
TAN [80] -0.48 -11.19 15.12 11.01 -157.03
NAF [78] -0.62 -11.96 15.09 8.86 -157.73

by [83], adding noise at the last step will significantly lower sampling quality, we use one

single denoising step at the end of sampling with Tweedie’s formula [84].

We report negative log-likelihood (NLL) in bits per dimension or negative ELBO if

NLL is unavailable. On MNIST, we achieve competitive performance on NLL as in Ta-

ble Table 3.2. We show the uncurated samples from DiffFlow in Figure Figure 3.6 and

Figure Figure 3.7. On CIFAR-10, DiffFlow also achieves competitive NLL performance

as shown in Table Table 3.3. DiffFlow performs better than normalizing flows and DDPM

models, but is slightly worse than DDPM++(sub, deep, sub-vp) and Improved DDPM.

However, these approaches conduct multiple architectural improvements and use much

deeper and wider networks. We also report the popular sample metric, Fenchel Incep-

tion Distance (FID) [85]. DiffFLow has a lower FID score than normalizing flows and

has competitive performance compared with DDPM trained with unweighted variational

bounds, DDPM and Improved DDPM. It is worse than DDPM trained with reweighted

loss, DDPM (Ls), DDPM cont, and DDPM++ [7, 73, 86]. Besides, sampling quality with

different sampling steps N are compared in Table Table 3.4 2. The advantage of Diff-

Flow is clear when we compare relative FIDs degeneracy ratio with N = 100 respectively.

DiffFlow is able to retain better sampling quality when decreasing N .

2The performance of DDPM is evaluated based on the officially released checkpoint with Ls denotes for
Lsimple in the original paper.
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Table 3.2: NLL on MNIST

Model NLL (↓)
RealNVP [55] 1.06
Glow [61] 1.05
FFJORD [63] 0.99
ResFlow [87] 0.97
DiffFlow 0.93

Figure 3.6: MNIST Samples

Figure 3.7: CIFAR10 Samples
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Table 3.3: NLLs and FIDs on CIFAR-10.

Model NLL(↓) FID (↓)
RealNVP [55] 3.49 -
Glow [61] 3.35 46.90
Flow++ [57] 3.29 -
FFJORD [63] 3.40 -
ResFlow [87] 3.28 46.37
DDPM (L) [7] ≤ 3.70 13.51
DDPM (Ls) [7] ≤ 3.75 3.17
DDPM (Ls)(ODE) [73] 3.28 3.37
DDPM cont. (sub-VP) [73] 3.05 3.56
DDPM++ (sub-VP) [73] 3.02 3.16
DDPM++ (deep, sub-VP) [73] 2.99 2.94
Improved DDPM [86] ≤2.94 11.47
DiffFlow (Lβ) ≤ 3.71 13.87
DiffFlow (L̂β) ≤ 3.67 13.43
DiffFlow (L̂β , ODE) 3.04 14.14

Table 3.4: FIDs with various N

N DiffFlow DDPM (L) DDPM (Ls) DDIM

5 28.31 373.51 370.23 44.69
10 22.56 364.64 365.12 18.62
20 17.98 138.84 135.44 10.89
50 14.72 47.12 34.56 7.01
100 13.43 22.23 10.04 5.63

Table 3.5: Relative FIDs degeneracy ratio

N DiffFlow DDPM (L) DDPM (Ls) DDIM

5 2.12 16.80 37.02 7.94
10 1.68 16.40 36.12 3.31
20 1.34 6.24 13.54 1.93
50 1.10 2.12 3.45 1.24
100 1.0 1.0 1.0 1.0
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3.5 Related work

Normalizing flows [55, 56] have recently received lots of attention due to its exact den-

sity evaluation and ability to model high dimensional data [61, 88]. However, the bijective

requirement poses limitations on modeling complex data, both empirically and theoreti-

cally [70, 64]. Some works attempt to relax the bijective requirement; discretely index

flows [88] use domain partitioning with only locally invertible functions. Continuously

indexed flows [64] extend discretely indexing to a continuously indexing approach. As

pointed out in Stochastic Normalizing Flows (SNF) [70], stochasticity can effectively im-

prove the expressive power of the flow-based model in low dimension applications. The

architecture used in SNF, which requires known underlying energy models, presents chal-

lenges for density learning tasks; SNF is designed for sampling from unnormalized prob-

ability distribution instead of density estimation. Besides, even with ideal networks and

infinite amount of data, due to the predefined stochstic block being used, SNF cannot find

models with aligned forward and backward distribution as DiffFlow.

When it comes to stochastic trajectories, minimizing the distance between trajectory

distributions has been explored in existing works. Denoising diffusion model [65] uses

a fixed linear forward diffusion schema and reparameterizes the KL divergence such that

minimizing loss is possible without computing whole trajectories. Diffusion models essen-

tially corrupt real data iteratively and learn to remove the noise when sampling. Recently,

Diffusion models have shown the capability to model high-dimensional data distribution,

such as images [7, 68], shapes [89], text-to-speech [90]. Lately, the Score-based model [73]

provides a unified framework for score-matching methods and diffusion models based on

stochastic calculus. The diffusion processes and sampling processes can be viewed as

forwarding SDE and reverse-time SDE. Thanks to the linear forward SDE being used in

DDPM, the forward marginal distributions have a closed-form and are suitable for training

score functions on large-scale datasets. Also, due to the reliance on fixed linear forward

36



process, it takes thousands of steps to diffuse data and generate samples. DiffFlow consid-

ers general SDEs and nosing and sampling are more efficient.

Existing Neural SDE approaches suffer from poor scaling properties. Backpropagat-

ing through solver [91] has a linear memory complexity with the number of steps. The

pathwise approach [92] scales poorly in computation complexity. Our stochastic adjoint

approach shares a similar spirit with SDE adjoint sensitivity [93]. The choice of caching

noise requires high resolution of time discretization and prevents the approach from scal-

ing to high dimension applications. By caching the trajectory states, DiffFlow can use a

coarser discretization and deploy on larger dimension problems and problems with more

challenging densities. The additional memory footprint is negligible compared with the

other network memory consumption in DiffFlow.

3.6 Limitations

While DiffFlow gains more flexibility due to the introduction of a learnable forward pro-

cess, it loses the analytical form for pF (xt|x0) and thus the training less efficient com-

pared with score-based loss [73]. Training DiffFlow relies on backpropagation through

trajectories and is thus significantly slower than diffusion models with affine drift. Em-

pirically, we found DiffFlow is about 6 times slower than DDPM in 2d toy examples, 55

times in MNIST, and 160 times in CIFAR10 without progressive training in Section sub-

section 3.3.3. Though the stochastic adjoint method and progressive training help save

memory footprint and reduce training time, the training of DiffFlow is still more expensive

than DDPM and its variants. On the other hand, compared with normalizing flows, the extra

noise in DiffFlow boosts the expressive power of the model with little extra cost. Though

DiffFlow trained based on SDE, its marginal distribution equivalent ODE Equation 3.2

shows much better performance than its counterpart trained with ODE [63]. It is interest-

ing to investigate, both empirically and theoretically, the benefit in terms of expressiveness

improvement caused by stochastic noise for training normalizing flows.
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3.7 Conclusions

We proposed a novel algorithm, the diffusion normalizing flow (DiffFlow), for genera-

tive modeling and density estimation. The proposed method extends both the normalizing

flow models and the diffusion models. Our DiffFlow algorithm has two trainable diffu-

sion processes modeled by neural SDEs, one forward and one backward. These two SDEs

are trained jointly by minimizing the KL divergence between them. Compared with most

normalizing flow models, the added noise in DiffFlow relaxes the bijectivity condition

in deterministic flow-based models and improves their expressive power. Compared with

diffusion models, DiffFlow learns a more flexible forward diffusion that is able to trans-

form data into noise more effectively and adaptively. In our experiments, we observed that

DiffFlow is able to model distributions with complex details that are not captured by repre-

sentative normalizing flow models and diffusion models, including FFJORD, DDPM. For

CIFAR10 dataset, our DiffFlow method has worse performance than DDPM in terms of

FID score. We believe our DiffFlow algorithm can be improved further by using different

neural network architectures, different time discretizing method and different choices of

time interval. We plan to explore these options in the near future.

Our algorithm is able to learn the distribution of high-dimensional data and then gen-

erate new samples from it. Like many other generative modeling algorithms, it may be

potentially used to generate misleading data such as fake images or videos.
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CHAPTER 4

LEARNING GENERATIVE MODELS WITH PIECES DATA

4.1 Introduction

The success of diffusion models [45, 4] can largely be attributed to their scalability. With

large-scale datasets and computing resources, practitioners can usually train high-capacity

models that are able to produce high-fidelity images. The recent generative AI revolution

led by large-scale text-to-image diffusion models is a great example [11, 19, 20]. The same

procedure, collecting a large dataset and using it to train a large-scale model, has been

applied to various problems and achieved great success [94, 51].

In this paper, we are interested in extending the success of diffusion models to a wider

class of data. We focus on applications where a large-scale dataset of the target content

does not exist or is prohibitively expensive to collect, but individual pieces of the content

are available in great quantities. 360-degree panorama images are such an example. While

360-degree panorama images are considered niche image content and only exist in small

quantities, there are a large number of normal perspective images available on the Inter-

net, each of which can be treated as a piece of a 360-degree panorama image. Another

example is generating images of extreme aspect ratios, as shown in Fig. 4.1. Each of the

extreme-aspect-ratio images can be considered as the stitching of multiple images with

normal aspect ratios. For such applications, while we cannot afford to collect a large-scale

dataset of the target content to train a diffusion model, we wish to synthesize high-quality

target content with a diffusion model trained on smaller pieces that are readily available.

A popular solution to this class of problems is to first train a diffusion model on small

pieces of the content and then generate the large content piece by piece in an autoregressive

manner [95, 96]. However, such an autoregressive approach has three drawbacks. First, as
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Application 1: Long image generation. Prompt: Cute Corgis at Da-Vinci Last Supper

Application 2: Looped text-to-motion generation
Prompt: A person repeatsrunning forward, punching in a manner consistent with martial arts,

bending down to pick something, walking forward, kickingwith legs.

Application 3: 
360 image generation

C
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Figure 4.1: DiffCollage, a scalable probabilistic model that synthesizes large content,
including long images, looped motions, and 360 images, with diffusion models only trained
on pieces of the content.

pieces are generated sequentially, the later-generated pieces have no influence on the prior-

generated ones. Such a sequential scheme could lead to sub-optimal results, especially

when there is a circular structure in the data. For example, it is hard to enforce consistency

between the start and end frames when generating looped videos autoregressively. Second,

autoregressive methods may suffer from error accumulation since the model was condi-

tioned on ground-truth data during training but is conditioned on its own prediction at test

time. Lastly, the time consumption of autoregressive generation increases linearly with the

size of the data and could become prohibitive when generating very large content.

To address the large content generation problem, we propose DiffCollage, a generic

algorithm that synthesizes large content by merging the results generated by diffusion mod-

els trained on small pieces of the large content. Our approach is based on a factor graph

formulation where a datum is modeled by a set of nodes and the edges connecting them.
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In our formulation, each node represents a contiguous portion of the large content, and

the portions of content in neighboring nodes have a small overlap. Each node is associ-

ated with a small diffusion model and each piece affects the generation of the other pieces.

Our method generates multiple pieces of content in parallel, which can greatly accelerate

sampling when a large pool of computation is available.

We evaluate our approach on multiple large content generation tasks, including infinity

image generation, long-duration text-to-motion with complex actions, content with unusual

structures such as looped motion, and 360-degree images. Experiment results show that our

approach outperforms existing approaches by a wide margin.

In summary, we make the following contributions.

• We propose DiffCollage, a scalable probabilistic model that synthesizes large

content by merging results generated by diffusion models trained on pieces of the

large content. It can synthesize large content efficiently by generating pieces in par-

allel.

• DiffCollage can work out-of-the-box when pre-trained diffusion models on dif-

ferent pieces are available.

• Extensive experimental results on benchmark datasets show the effectiveness and

versatility of the proposed approaches on various tasks.

4.2 Related Work

Diffusion models Diffusion models [97, 45, 4] have achieved great success in various

problems, such as text-to-image generation [11, 19, 20], time series modeling [98], point

cloud generation [99, 100, 101], natural language processing [102], image editing [103,

104, 105, 106], inpainting [107, 108, 109, 15], and adversarial defense [110]. Recently,

impressive progress has been made in improving its quality [19, 8, 11, 20], controllabil-

ity [111, 103, 112, 113, 114, 104], and efficiency [115, 24, 28, 116]. In this paper, we aim
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to enlarge the kind of data that diffusion models can generate.

Large content generation Generating large content with generative models trained on

small pieces of large content has been explored by prior works. One class of methods relies

on latent variable models, e.g. , GANs [17], that map a global latent code and a spatial

latent code to an output image. The global latent code represents the holistic appearance

of the image and the spatial latent code is typically computed from a coordinate system.

Some works [117, 118] generate different patches using the same global code and merge

them to obtain the full image. A discriminator can be used to ensure the coherence of the

full image. Instead of generating patches independently, some recent works generate the

full image in one shot using architectures that guarantee translation equivariance, such as

padding-free generators [119, 120, 121] or implicit MLP-based generators [122, 123, 124].

Another popular approach to generating large content is to autoregressively apply “out-

painting” to gradually enlarge the content. The outpainting could be implemented by a

diffusion model [95, 107, 125, 108, 126, 127], an autoregressive transformer [96, 128,

129], or a masked transformer [130, 129, 131].

4.3 Preliminaries

Diffusion models consist of two processes: a forward diffusion process and a reverse pro-

cess. The forward diffusion process progressively injects Gaussian noise into samples from

the data distribution q0(u0) and results in a family of noised data distributions qt(ut). It

can be shown that the distribution of ut conditioned on the clean data u0 is also Gaussian:

q0t(ut|u0) = N (u0, σ
2
t I). The standard deviation σt monotonically increases with re-

spect to the forward diffusion time t. The reverse process is designed to iteratively remove

the noise from the noised data to recover the clean data, which can be formulated as the

42



following stochastic differential equation (SDE) [132, 28, 37]

du = −(1 + η2)σ̇tσt∇u log qt(u)dt+ η
√

2σ̇tσtdw, (4.1)

where ∇u log qt(u) is the score function of a noised data distribution, wt is the standard

Wiener process, and η ≥ 0 determines the amount of random noise injected during the de-

noising process. When η = 1, Eq. (4.1) is known as reverse-time SDE of the forward

diffusion process[4, 48], from which ancestral sampling and samplers based on Euler-

Maruyama can be employed [4, 45]. Eq. (4.1) reduces to a probability flow ODE when

η = 0 [4]. In practice, the unknown score function∇u log qt(u) is estimated using a neural

network sθ(u, t) by minimizing a weighted sum of denoising autoencoder (score match-

ing [50]) objectives:

argminθ Et,u0 [ω(t) ∥∇ut log q0t(ut|u0)− sθ(ut, t)∥2], (4.2)

where ω(t) denotes a time-dependent weight.

4.4 Diffusion Collage

DiffCollage is an algorithm that can generate large content in parallel using diffusion

models trained on data consisting of portions of the large content. We first introduce the

data representation and then discuss training and sampling. For simplicity, we derive the

formulation for unconditional synthesis throughout this section; the formulation can be

easily extended to conditional synthesis.

4.4.1 Representation

A simple example A simple use case of DiffCollage is to generate a long image by

assembling diffusion models trained on shorter images. An autoregressive solution to this

problem is to first generate an initial square image and then perform outpainting condi-
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Figure 4.2: Factor graphs for various applications. From top to bottom: a linear chain for
arbitrarily long sequences, a cycle graph for arbitrarily long loops, a grid graph for images
of arbitrary height and width, and a complex factor graph for 360-degree panoramas.
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Figure 4.3: How DiffCollage synthesize long images. To calculate the score for each
denoising step on the long image, we split the input based on the factor graph into regions
of factor nodes and variables. We obtain the scores of individual regions by using the
individual diffusion models. We then merge the scores to compute the score of the target
diffusion model on the long image.

tioned on a part of the previously generated image [95], which results in a slightly larger

output image. We denote this larger image as u = [x(1),x(2),x(3)] where [x(1),x(2)] is the
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initial image and x(3) is the outpainted region generated by the conditional model x(3)|x(2).

Notably, this procedure makes a conditional independence assumption: conditioned on

x(2), x(1) and x(3) are independent, i.e., q(x(3)|x(1),x(2)) = q(x(3)|x(2)). Therefore, the

joint probability is

q(u) = q(x(1),x(2),x(3)) = q(x(1),x(2))q(x(3)|x(2))

=
q(x(1),x(2))q(x(2),x(3))

q(x(2))
. (4.3)

The score function of q(u) can be represented as a sum over the scores of smaller images

∇ log q(u) =∇ log q(x(1),x(2)) +∇ log q(x(2),x(3))

−∇ log q(x(2)) . (4.4)

Each individual score can be estimated using a diffusion model trained on smaller im-

ages. Unlike the autoregressive method, which generates content sequentially, DiffCollage

can generate different pieces in parallel since all individual scores can be computed inde-

pendently.

Generalization to arbitrary factor graphs Now, we generalize the above example to

more complex scenarios. For a joint variable u = [x(1),x(2), . . . ,x(n)], a factor graph

[133] is a bipartite graph connecting variable nodes {x(i)}ni=1 and factor nodes {f (j)}mj=1,

where f (j) ⊆ {x(1),x(2), . . . ,x(n)}. An undirected edge between x(i) and f (j) exists if

and only if x(i) ∈ f (j). In the above example, there are two factors f (1) = {x(1),x(2)}

and f (2) = {x(2),x(3)}. Given a factor graph that represents the factorization of the joint
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distribution q(u)1, DiffCollage approximates the distribution as follows:

p(u) :=

∏m
j=1 q(f

(j))∏n
i=1 q(x

(i))di−1
, (4.5)

where di is the degree of the variable node x(i). It is easy to verify that Eq. (4.5) reduces to

Eq. (4.3) in the simple case since the nodes for x(1) and x(3) have a degree of one (connected

to f (1) and f (2) respectively) and the node for x(2) has a degree of two (connected to both

f (1) and f (2)). Similar to Eq. (4.4), we can approximate the score of q(u) by adding the

scores over factor nodes (i.e., q(f (j))) and subtracting the scores over non-leaf variable

nodes (i.e., q(x(i)))

∇ log p(u) :=
m∑
j=1

∇ log q(f (j)) +
n∑

i=1

(1− di)∇ log q(x(i)) . (4.6)

In fact, Eq. (4.5) is also known in the probabilistic graphical model literature as the sem-

inal Bethe approximation, which approximates the joint distribution q(u) by its marginals

defined over factor and variable nodes [134, 135]. The approximation is exact, i.e., p(u) =

q(u), when the factor graph is an acyclic graph. For a general graph with cycles, the Bethe

approximation is widely used in practice and obtains good performance [136, 133].

In practice, factor graphs are general enough to cover contents of arbitrary size and

shape, such as those in Fig. 4.2:

• An arbitrarily long sequence: The factor graph is a linear chain in which each

factor is connected to two variables, and each variable is connected to two factors

(except for leaf variables). We show a detailed characterization in Fig. 4.3.

• An arbitrarily long sequence with a loop: Similar to the linear chain but with a

variable node connecting the head and tail factor nodes.

• An image of arbitrary height and width: Here, each factor is an image patch

1In order words, the joint distribution can be written as a product of functions, each of which is a function
of a single factor.
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Figure 4.4: Long images generated by various approaches that only use diffusion models
trained on smaller square images. For autoregressive approaches (Replace and Recon), we
first generate the image in the middle then outpaint towards left and right. Replace and
Recon introduce discontinuity artifacts while DiffCollage can generate high-fidelity
images in parallel.

that overlaps with 4 other factors at the 4 corners. Each overlapping region is a

variable. Thus, each factor node is connected to 4 variables, and each variables node

is connected to 2 factors (except for edge cases).

• A 360-degree image represented as a cubemap: A cube consists of 6 faces: Front,

Back, Left, Right, Up, Down. There are three cycles (LFRB, ULDR, UFDB) can

be modeled via the cycle graph, and these cycles overlap one another by two faces.

Intuitively, we can treat these cycles as factors and faces as variables.

4.4.2 Training and Sampling

Training DiffCollage is trained to estimate the score of noised data distributions

qt(u). Similar to the Bethe approximation (Eqs. (4.5) and (4.6)) for clean data, we factorize
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the score of the time-dependent noised data distributions:

∇ log pθ(u, t) =
m∑
j=1

∇ log pθ(f
(j), t)

+
n∑

i=1

(1− di)∇ log pθ(x
(i), t). (4.7)

To close the gap between our learned model and the Bethe approximation in Eq. (4.5),

we optimize θ by performing denoising score matching between the marginal scores of real

data {q(x(i), t), q(f (j), t)} and learned marginal scores {pθ(x(i), t), pθ(f
(j), t)} (following

Eq. (4.2)). This can be done by learning a diffusion model for each marginal distribution

of real data; we list the detailed algorithm for training in the supplementary material.

It should be noted that even though we aim to approximate one joint distribution,

learning a diffusion model for one marginal distribution is independent of learning other

marginals. With such independence, diffusion models on different marginals can be learned

in parallel. Practically, diffusion models on different marginals can be amortized where we

employ one shared diffusion model with conditional signals y[f (j)] from factor node f (j)

and y[i] from variable node x(i) to learn various marginals.

Sampling After training the diffusion models for each marginal, the score model of

DiffCollage for pθ(u, t) is simply obtained via Eq. (4.7), and it is a diffusion model

with a specific score approximation. Thus DiffCollage is sampler-agnostic, and we

can leverage existing solvers for Eq. (4.1) to generate samples with the approximated score

in Eq. (4.7), such as DDIM [115], DEIS [24], DPM-Solver [137] and gDDIM [28], all

without any modifications. We emphasize that diffuson models on various marginals can

be evaluated at the same time and generate different pieces of data {f (j),x(i)} in parallel,

unlike the conventional autoregressive approaches, so with advanced samplers, the number

of iterations taken by DiffCollage could be much less than that of an autoregressive

model.
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4.5 Experiments

Here, we present quantitative and qualitative results to show the effectiveness and effi-

ciency of DiffCollage. We perform experiments on various generation tasks, such as

infinite image generation (Sec. 4.5.1), arbitrary-sized image translation (Sec. 4.5.2), motion

synthesis (Sec. 4.5.3), and 360-degree panorama generation (Sec. 4.5.4).

4.5.1 Infinite image generation

We first evaluate DiffCollage in the infinite image generation task [118] where the goal

is to generate images extended to infinity horizontally. We employ a linear chain as shown

in Fig. 4.2 and use the same score network for all factor nodes and variable nodes since

the marginal image distribution is shift-invariant.

We finetune a pre-trained GLIDE model [10], which is a two-stage diffusion model

consisting of a 64× 64 square generator and one 64→ 256 upsampler on an internal land-

scape dataset. We additionally finetune a pre-trained eDiff-I [20] 256 → 1024 upsampler.

Combining them together, we have a score model for individual nodes that can generate

images of resolution up to 1024×1024. To control the style of the output [20, 11], the base

diffusion model is conditioned on CLIP [94] image embeddings.

Other diffusion-based approaches tackle this problem by performing outpainting au-

toregressively [95]. Specifically, it generates the first image using a standard diffusion

model, then extends the image through repeated application of outpainting toward left and

right. The outpainting problem can be treated as an inpainting problem with 50% of the

content masked out. While there exist diffusion models specifically trained for inpaint-

ing [95], we only perform comparisons with other generic methods that work on any pre-

trained diffusion models. We compare DiffCollage with two inpainting approaches.

The first one is the “replacement” approach, where we constantly replace part of interme-

diate predictions with known pixels [107, 108, 109]. The second is the “reconstruction”
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approach, which uses the gradient of the reconstruction loss on known pixels to correct

the unconditional samples [126, 127, 138]. This approach is slightly more computation-

ally expensive since it needs to compute the gradient of the reconstruction loss w.r.t the

intermediate predictions. We discuss more details in the supplementary.

To compare the generation quality of generated panorama images, we propose FID

Plus (FID+). We first generate 50k panorama images with spatial ratio W/H = 6 and

randomly crop one square image H × H for each image. FID+ is the Frechet inception

distance (FID, [139]) of the 50k randomly cropped images. We also include a baseline

that naively concatenates independently generated images of H × H into a long image.

Although each generated image is realistic, this approach has a bad FID+ because randomly

cropped images may contain clear boundaries.

As shown in Tab. 4.1, DiffCollage outperforms other approaches in terms of sam-

ple quality evaluated by FID+. In Fig. 4.4, we show that the sample quality of autore-

gressive approaches deteriorates as the image grows due to error accumulation, while

DiffCollage does not have this issue. Fig. 4.5 compares the latency of generating one

panorama image with different image sizes. Thanks to its parallelization, DiffCollage

is about H/2W times and H/W times faster than replacement and reconstruction meth-

ods respectively when generating one H × W image with H ≥ 2W . We further apply

DiffCollage to eDiff-I [20], a recent large-scale text-to-image model in Fig. 4.1, to

generate a wide image from the text prompt “Cute Corgis at Da-Vinci Last Supper”, which

demonstrates the general applicability of DiffCollage to arbitrary diffusion models.

In addition, the score models for different nodes can be conditioned on different con-

trol signals. We illustrate this point by connecting any two landscape images of different

styles. This is a challenging inpainting task where only pixels at two ends are given. The

score models for intermediate nodes are conditioned on interpolated CLIP embeddings. As

shown in Fig. 4.6, we are able to generate a long image that transitions from one style to

another totally different one.
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Table 4.1: Comaprison among diffusion-based methods for infinite image generation on an
internal landscape dataset. Our method achieves the best image quality while also being
the fastest since we can compute individual scores in parallel and do not require backprop-
agating through the diffusion model to obtain gradients.

Algo Parallel Gradients FID+ ↓ Time ↓
Baseline - - 24.15 5.61

Replacement No Not required 10.25 14.99
Reconstruction No Required 8.97 26.43

Ours Yes Not required 4.54 6.47
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Figure 4.5: Wall-clock time for generating images with various lengths (Left) and motion
sequences with various durations (Right).

We compare DiffCollage with other methods specifically designed for long im-

age generation tasks on LHQ [118] and LSUN Tower [140], following the setting in Sko-

rokhodov et al. [118]. We evaluate standard FID over images of size H × H , as well as

FID+ in Tab. 4.2. As shown in the table, even though our approach is never trained on long

image generation, it achieves competitive results compared with methods that are tailored

to the task and require problem-specific networks for the image dataset.
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x0

x(N) pθ({x(i)}|x(0),x(N))

Figure 4.6: Connecting real images. Given a pair of 64 × 64 real images x(0) and x(N),
DiffCollage can generate a 1024 × 10752 image that transitions naturally from x(0)

into x(N).

Table 4.2: Comparison against methods specifically designed for infinity image genera-
tion (Dark-colored rows). Our approach achieves higher quality despite being more gen-
eral.

Dataset
LHQ 2562 Tower 2562

FID FID+ FID FID+

VQGAN [96] 58.27 62.12 45.18 47.32
ALIS [118] 12.60 14.27 11.85 15.27

Replacement 6.28 28.94 7.15 30.19
Reconstruction 6.28 18.37 7.15 19.56

Ours 6.28 16.43 7.15 13.27

4.5.2 Arbitrary-sized image translation

Our method can be applied to various image translation tasks where the size of the input

image is different from what the diffusion model is trained on. We use DiffCollage to

aggregate the scores of individual nodes and the score of each node can be estimated using

methods that are developed for standard diffusion models, such as replacement [107, 125,

108] or reconstruction methods [126, 127] for inpainting, and SDEdit [103] for stroke-

based image synthesis. To achieve these with existing methods, one could also split the

large image into several smaller ones and apply the conditional generation methods inde-

pendently. However, this fails to model the interactions between the split images, resulting

in discontinuities in the final image; we illustrate this in Fig. 4.7 for the task of inpaint-

ing from sparse pixels. In contrast, DiffCollage can capture global information and
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Figure 4.7: Inpainting on non-square images. The first row contains two masked images.
The second row contains the inpainting results by splitting the input non-square images
into a set of square images. In the left/right example, the input image is split into two/three
square images. The Recon results in apparent boundary artifacts. The third row contains
the inpainting results with DiffCollage.

Figure 4.8: Complex motions synthesis. Though the pre-trained motion diffusion
model [141] can only generate simple motions with one or two actions, DiffCollage
can extend it to synthesize long sequences with an arbitrary number of actions. Prompts:
(Top) A person runs forward, then kicks his legs, then skips rope, then bends down to pick
something up off the ground. (Bottom) A person runs forward, then skips rope, then bends
down to pick something up off the ground, then kicks his legs.

faithfully recover images from given sparse pixels.
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4.5.3 Text-to-motion generation

Given a text description of the desired motion, the goal of this task is to synthesize a

motion sequence corresponding to the description. In this section, we evaluate our ap-

proach on the popular benchmark HumanML3D [142, 143], using a pre-trained motion

diffusion model [141]. The pre-trained diffusion model was trained with sequences of var-

ious lengths. As a result, it can use be used as the score estimator for both factor nodes and

variable nodes in our formulation directly.

High-fidelity generated samples are expected to follow basic rules of physics and be-

have similarly to realistic human motions. Specifically, we adopt the set of metrics from

Guo et al. [142], including R-precision and Multimodal-Distance that quantify the align-

ment between generated samples and the given prompt, FID that measures the distance

between the distribution of ground truth motions and generated motions, and Diversity that

measures the variability in samples generated by our methods.

Long-duration motion generation In HumanML3D, the average motion length is

7.1s, and the maximum duration is 10s. Our goal is to generate high-fidelity motion se-

quences that are much longer than what we have in the training data. To achieve this, we

use a linear chain graph similar to the one used in infinite image generation. To evaluate our

method, we generate a 24s motion for each text and randomly crop generated sequences,

analogous to FID+ for images.

We compare our approach with several methods, including naively denoising a long

sequence (Baseline) and autoregressive generation with replacement and reconstruction

methods, respectively. The results in Tab. 4.3 show that DiffCollage outperforms other

approaches in all evaluated metrics by a notable amount.

Compositing multiple actions The existing human motion generative model can only

synthesize simple motions since there are only one or two actions for one motion sequence

in the training dataset. With DiffCollage, we can augment the simple motion diffusion

model with the ability to synthesize complex actions. We use the desired text prompts for
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Table 4.3: Quantitative results of long-duration generation on the HumanML3D test
set [142]. Dark-colored rows are the results of short-duration motion samples (for ref-
erence only), while other rows evaluate methods that generate 24 seconds of motion, which
is around 4 times longer than the average length of training data. All methods are based on
pre-trained MDM [141]. → means the results are better if the metric is closer to real data.

Method
R Precision

(top 3)↑ FID↓ Multimodal
Dist↓ Diversity→

Real data 0.798 0.001 2.960 9.471
MDM [141] 0.605 0.492 5.607 9.383

Baseline 0.298 10.690 7.512 6.764
Replacement 0.567 1.281 5.751 9.184

Reconstruction 0.585 1.012 5.716 9.175
Ours 0.611 0.605 5.569 9.372

the conditions of factors y[fj], and the unconditional null token for that of variables y[i].

As shown in Fig. 4.8, by constructing graphs with different marginal distributions specified

by different conditions y[fj],y[i], we can generate complex motion sequences.

4.5.4 Generation with complex graphs

We further show that DiffCollage is able to generate data with a challenging depen-

dency structure specified by a complex graph (such as the ones in Fig. 4.9). As shown

in Fig. 4.9 (top), DiffCollage can generate a horizontal panorama by constructing a cy-

cle graph. We also apply our method to generate a 360-degree panorama using a diffusion

model trained only on normal perspective images conditioned on semantic segmentation

maps (Fig. 4.9 bottom). This allows users to create beautiful panoramas from simple doo-

dles, similar to some existing applications such as GauGAN [144] and GauGAN2 [145]

but providing a more immersive experience to users.

4.6 Conclusion

In this work, we propose DiffCollage, a novel diffusion model that can synthesize large

content via a collection of diffusion models trained on pieces of large content. DiffCollage

is based on factor graph representation and inspired by Bethe approximation, both com-
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Figure 4.9: Top: a 1024 × 10240 horizontal panorama image. Bottom left: spherical/cube
map representations of an input segmentation map and the output 360-degree panorama
image. Each face of the cube is of size 1024× 1024. Bottom right: equirectangular repre-
sentation of the input segmentation and the output image.

monly used in probabilistic graphical models. DiffCollage is scalable; it allows differ-

ent diffusion models trained only with samples from marginal distributions instead of joint

data distribution, which are easier to obtain. DiffCollage is efficient; diffusion models

for different marginals can be trained and sampled in parallel. Through DiffCollage,

we enable large content generation with diffusion models.
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CHAPTER 5

LEARNING NEURAL SDES WITH UNNORMALIZED DENSITY

5.1 Introduction

We are interested in drawing samples from a target density µ̂ = Zµ known up to a normal-

izing constant Z. Although it has been widely studied in machine learning and statistics,

generating asymptotically unbiased samples from such unnormalized distribution can still

be challenging [34]. In practice, variational inference (VI) and Monte Carlo (MC) methods

are two popular frameworks for sampling.

Variational inference employs a density model q, from which samples are easy and

efficient to draw, to approximate the target density [56, 70]. Two important ingredients for

variational inference sampling include a distance metric between q and µ̂ to identify good

q and the importance weight to account for the mismatch between the two distributions.

Thus, in variational inference, one needs to access the explicit density of q, which restricts

the possible parameterization of q. Indeed, explicit density models that provide samples

and probability density such as Autoregressive models and normalizing flow are widely

used in density estimation [146, 147]. However, such models impose special structural

constraints on the representation of q. For instance, the expressive power of normalizing

flows [56] is constrained by the requirements that the induced map has to be bijective and

its Jacobian needs to be easy-to-compute [64, 63, 5].

Most MC methods generate samples by iteratively simulating a well-designed Markov

chain (MCMC) or sampling ancestrally [148]. Among them, Sequential Monte Carlo and

its variants augmented with annealing trick are regarded as state-of-the-art in certain sam-

pling tasks [149]. Despite its popularity, MCMC methods may suffer from long mixing

time. The short-run performance of MCMC can be difficult to analyze and samples often
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get stuck in local minima [150, 151]. There are some recent works exploring the possibility

of incorporating neural networks to improve MCMC [152, 153]. However, evaluating ex-

isting MCMC empirically, not to say designing an objective loss function to train network-

powered MCMC, is difficult [154, 155]. Most existing works in this direction focus only on

designing data-aware proposals [156, 157] and training such networks can be challenging

without expertise knowledge in sampling.

In this work, we propose an efficient sampler termed Path Integral Sampler (PIS) to

generate samples by simulating a stochastic differential equation (SDE) in finite steps. Our

algorithm is built on the Schrödinger bridge problem [158, 159, 160, 161] whose original

goal was to infer the most likely evolution of a diffusion given its marginal distributions at

two time points. With a proper prior diffusion model, this Schrödinger bridge framework

can be adopted for the sampling task. Moreover, it can be reformulated as a stochastic

control problem [162] whose terminal cost depends on the target density µ̂ so that the dif-

fusion under optimal control has terminal distribution µ̂. We model the control policy with

a network and develop a method to train it gradually and efficiently. The discrepancy of

the learned policy from the optimal policy also provides an evaluation metric for sampling

performance. Furthermore, PIS can be made unbiased even with sub-optimal control pol-

icy via the path integral theorem to compute the importance weights of samples. Compared

with VI that uses explicit density models, PIS uses an implicit model and has the advantage

of free-form network design. The explicit density models have weaker expressive power

and flexibility compared with implicit models, both theoretically and empirically [64, 87,

71, 163]. Compared with MCMC, PIS is more efficient and is able to generate high-quality

samples with fewer steps. Besides, the behavior of MCMC over finite steps can be analyzed

and quantified. We provide explicit sampling quality guarantee in terms of Wasserstein dis-

tance to the target density for any given sub-optimal policy.

Our algorithm is based on [39], where the authors establish the connections between

generative models with latent diffusion and stochastic control and justify the expressive-
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Uncontrolled Q0 Terminal Cost Ψ = log µ0

µ
Optimal control Q∗ = µ

µ0
Q0

Figure 5.1: Illustration of Path Integral Sampler (PIS). The optimal policy of a specific
stochastic control problem where a terminal cost function is chosen according to the given
target density µ, can generate unbiased samples over a finite time horizon.

ness of such models theoretically. How to realize this model with networks and how the

method performs on real datasets are unclear in [39]. Another closely related work is [70,

164], which extends Sequential Monte Carlo (SMC) by combining deterministic normal-

izing flow blocks with stochastic MCMC blocks. To be able to evaluate the importance

weights efficiently, MCMC blocks need to be chosen based on annealed target distribu-

tions carefully. In contrast, in PIS one can design expressive architecture freely and train

the model end-to-end without the burden of tuning MCMC kernels, resampling or anneal-

ing scheduling. We summarize our contributions as follows. 1). We propose Path Integral

Sampler, a generic sampler that generates samples through simulating a target-dependent

SDE which can be trained with free-form architecture network design. We derive perfor-

mance guarantee in terms of the Wasserstein distance to the target density based on the

optimality of the learned SDE. 2). An evaluation metric is provided to quantify the per-

formance of learned PIS. By minimizing such evaluation metric, PIS can be trained end-

to-end. This metric also provides an estimation of the normalization constants of target

distributions. 3). PIS can generate samples without bias even with sub-optimal SDEs by

assigning importance weights using path integral theory. 4). Empirically, PIS achieves the

state-of-the-art sampling performance in several sampling tasks.
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5.2 Sampling and stochastic control problems

We begin with a brief introduction to the sampling problem and the stochastic control

problem. Throughout, we denote by τ = {xt, 0 ≤ t ≤ T} a continuous-time stochastic

trajectory.

5.2.1 Sampling problems

We are interested in drawing samples from a target distribution µ(x) = µ̂(x)/Z in Rd

where Z is the normalization constant. Many sampling algorithms rely on constructing a

stochastic process that drives the random particles from an initial distribution ν that is easy

to sample from, to the target distribution µ.

In the variational inference framework, one seeks to construct a parameterized stochas-

tic process to achieve this goal. Denote by Ω = C([0, T ];Rd) the path space consisting

of all possible trajectories and by P the measure over Ω induced by a stochastic process

with terminal distribution µ at time T . Let Q be the measure induced by a parameterized

stochastic and denote its marginal distribution at T by µQ. Then, by the data processing

inequality, the Kullback-Leibler divergence (KL) between marginal distributions µQ and µ

can be bounded by

DKL(µ
Q∥µ) ≤ DKL(Q∥P) :=

∫
Ω

dQ log
dQ
dP . (5.1)

Thus, DKL(Q∥P) serves as a performance metric for the sampler, and a small DKL(Q∥P)

value corresponds to a good sampler.

5.2.2 Stochastic control

Consider a model characterized by a special stochastic differential equation (SDE) [165]

dxt = utdt+ dwt, x0 ∼ ν, (5.2)
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where xt,ut denote state and control input respectively, and wt denotes standard Brownian

motion. In stochastic control, the goal is to find an feedback control strategy that minimizes

a certain given cost function.

The standard stochastic control problem can be associated with any cost and any dy-

namics. In this work, we only consider cost of the form

E
[∫ T

0

1

2
∥ut∥2 dt+Ψ(xT ) | x0 ∼ ν

]
, (5.3)

where Ψ represents the terminal cost. The corresponding optimal control problem can be

solved via dynamic programming [166], which amounts to solving the Hamilton-Jacobi-

Bellman (HJB) equation [167]

∂Vt
∂t
− 1

2
∇V ′

t∇Vt +
1

2
∆Vt = 0, VT (·) = Ψ(·). (5.4)

The space-time function Vt(x) is known as cost-to-go function or value function. The

optimal policy can be computed from Vt(x) as [158]

u∗
t (x) = −∇Vt(x). (5.5)

5.3 Path Integral Sampler

It turns out that, with a proper choice of initial distribution ν and terminal loss function

Ψ, the stochastic control problem coincides with sampling problem, and the optimal policy

drives samples from ν to µ perfectly. The process under optimal control can be viewed as

the posterior of uncontrolled dynamics conditioned on target distribution as illustrated in

Fig. 5.1. Throughout, we denote by Qu the path measure associated with control policy u.

We also denote by µ0 the terminal distribution of the uncontrolled processQ0. For the ease

of presentation, we begin with sampling from a normalized density µ, and then generalize

the results to unnormalized µ̂ in Sec. 5.3.4.
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5.3.1 Path Integral and value function

Thanks to the special cost structure, the nonlinear HJB Eq. (5.4) can be transformed into a

linear partial differential equation (PDE)

∂ϕt

∂t
+

1

2
∆ϕt = 0, ϕT (·) = exp{−Ψ(·)} (5.6)

by logarithmic transformation [165] Vt(x) = − log ϕt(x). By the celebrated Feynman-Kac

formula [168], the above has solution

ϕt(x) = EQ0 [exp(−Ψ(xT ))|xt = x]. (5.7)

We remark that Eq. (5.7) implies that the optimal value function can be evaluated without

knowing the optimal policy since the above expectation is with respect to the uncontrolled

process Q0. This is exactly the Path Integral control theory [169, 170, 171]. Furthermore,

the optimal control at (t,x) is

u∗
t (x) = ∇ log ϕt(x) = lim

s↘t

EQ0{exp{−Ψ(xT )}
∫ s

t
dwt | xt = x}

(s− t)EQ0{exp{−Ψ(xT )} | xt = x} , (5.8)

meaning that u∗
t (x) can also be estimated by uncontrolled trajectories.

5.3.2 Sampling as a stochastic optimal control problem

There are infinite choices of control strategy u such that Eq. (5.2) has terminal distribution

µ. We are interested in the one that minimizes the KL divergence to the prior uncontrolled

process. This is exactly the Schrödinger bridge problem [158, 159, 162, 161], which has

been shown to have a stochastic control formulation with cost being control efforts. In

cases where ν is a Dirac distribution, it is the same as the stochastic control problem in

Sec. 5.2.2 with a proper terminal cost as characterized in the following result [39].
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Theorem 2. When ν is a Dirac distribution and terminal loss is chosen as Ψ(xT ) =

log
µ0(xT )

µ(xT )
, the distribution Q∗ induced by the optimal control policy is

Q∗(τ) = Q0(τ |xT )µ(xT ). (5.9)

Moreover, Q∗(xT ) = µ(xT ).

To gain more insight, consider the KL divergence

DKL(Qu(τ)∥Q0(τ |xT )µ(xT )) = DKL(Qu(τ)∥Q0(τ)
µ(xT )

µ0(xT )
) (5.10)

= DKL(Qu∥Q0) + EQu [log
µ0

µ
]. (5.11)

Thanks to the Girsanov theorem [165],

dQu

dQ0
= exp(

∫ T

0

1

2
∥ut∥2 dt+ u′

tdwt). (5.12)

It follows that

DKL(Qu∥Q0) = EQu [

∫ T

0

1

2
∥ut∥2 dt]. (5.13)

Plugging Eq. (5.13) into Eq. (5.10) yields

DKL(Qu(τ)∥Q0(τ |xT )µ(xT )) = EQu [

∫ T

0

1

2
∥ut∥2 dt+ log

µ0(xT )

µ(xT )
], (5.14)

which is exactly the cost defined in Eq. (5.3) with Ψ = log
µ0

µ
. Theorem 2 implies that

once the optimal control policy that minimizes this cost is found, it can also drive particles

from x0 ∼ ν to xT ∼ µ.
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5.3.3 Optimal control policy and sampler

Optimal Policy Representation: Consider the sampling strategy from a given target den-

sity by simulating SDE in Eq. (5.2) under optimal control. Even though the optimal policy

is characterized by Eq. (5.8), only in rare case (Gaussian target distribution) it has an ana-

lytic closed-form.

For more general target distributions, we can instead evaluate the value function Eq. (5.7)

via empirical samples using Monte Carlo. The approach is essentially importance sampling

whose proposal distribution is the uncontrolled dynamics. However, this approach has two

drawbacks. First, it is known that the estimation variance can be intolerably high when

the proposal distribution is not close enough to the target distribution [148]. Second, even

if the variance is acceptable, without a good proposal, the required samples size increases

exponentially with dimension, which prevents the algorithm from being used in high or

even medium dimension settings [172].

To overcome the above shortcomings, we parameterize the control policy with a neural

network uθ. We seek a control policy that minimizes the cost

u∗ = argmin
u

EQu

[∫ T

0

1

2
∥ut∥2 dt+ log

µ0(xT )

µ(xT )

]
. (5.15)

The formula Eq. (5.15) also serves as distance metric between uθ and u∗ as in Eq. (5.14).

Gradient-informed Policy Representation: It is believed that proper prior informa-

tion can significantly boost the performance of neural network [173]. The score∇ log µ(x)

has been used widely to improve the proposal distribution in MCMC [153, 174] and often

leads to better results compared with proposals without gradient information. In the same

spirit, we incorporate∇ log µ(x) and parameterize the policy as

ut(x) = NN1(t,x) + NN2(t)×∇ log µ(x), (5.16)
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Algorithm 3 Training
Input: Vector: x0 = 0,Scalar: y0 = 0
Output: ut(x) parameterized by θ

Define: SDE drift f(t, [xt, yt]) = [uθt(xt),
1

2
∥uθt(xt)∥2], diffusion g(t, [xt, yt]) = [1, 0]

loop epoches
xT , yT = sdeint(f ,g, [x0, y0], [0, T ]) # Integrate SDE from 0 to T with Neural

SDE

Gradient descent step∇θ[yT + log
µ0(xT )

µ(xT )
] # Optimize control policy

done

where NN1 and NN2 are two neural networks. Empirically, we also found that the gradient

information leads to faster convergence and smaller discrepancyDKL(Qu∥Q∗). We remark

that PIS with policy Eq. (5.16) can be viewed as a modulated Langevin dynamics [148] that

achieves µ within finite time T instead of infinite time.

Optimize Policy: Optimizing uθ requires the gradient of loss in Eq. (5.15), which

involves ut and the terminal state xT . To calculate gradients, we rely on backpropagation

through trajectories. We train the control policy with recent techniques of Neural SDEs [1,

44], which greatly reduce memory consumption during training. The gradient computation

for Neural SDE is based on stochastic adjoint sensitivity, which generalizes the adjoint

sensitivity method for Neural ODE [32]. Therefore, the backpropagation in Neural SDE is

another SDE associated with adjoint states. Unlike the training of traditional deep MLPs

which often runs into gradient vanishing/exploding issues, the training of Neural SDE/ODE

is more stable and not sensitive the number of discretization steps [32, 44]. We augment

the origin SDE with state
∫ t

0

1

2
∥us∥2 ds such that the whole training can be conducted end

to end. The full training procedure in provided in Algo 3.

Wasserstein distance bound: The PIS trained by Algo 3 can not generate unbiased

samples from the target distribution µ for two reasons. First, due to the non-convexity

of networks and randomness of stochastic gradient descent, there is no guarantee that

the learned policy is optimal. Second, even if the learned policy is optimal, the time-
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discretization error in simulating SDEs is inevitable. Fortunately, the following theorem

quantifies the Wasserstein distance between the sampler and the target density.

Theorem 3 (Informal). Under mild condition, with sampling step size ∆t, if ∥u∗
t − ut∥2 ≤

dϵ for any t, then

W2(Qu(xT ), µ(xT )) = O(
√
Td(∆t+ ϵ)). (5.17)

5.3.4 Importance Sampling

The training procedure for PIS does not guarantee its optimality. To compensate for the

mismatch between the trained policy and the optimal policy, we introduce importance

weight to calibrate generated samples. The importance weight can be calculated by

wu(τ) =
dQ∗(τ)

dQu(τ)
= exp(

∫ T

0

−1

2
∥ut∥2 dt− u′

tdwt −Ψ(xT )). (5.18)

Algorithm 4 Sampling
Input: Vector: x0 = 0,Scalar: y0 = 0

Output: Samples with weights

for i← 1 to N do

∆t = ti − ti−1,∆w ∼ N (0,∆tI),

xi = xi−1 + u∆t+∆w

yi = yi−1 + u′∆w +
1

2
∥u∥2∆t

end for

Outputs: xN , exp(−yN− log
µ0(xN)

µ(xN)
)

We note Eq. (5.18) resembles training objective Eq. (5.15). Indeed, Eq. (5.15) is the

average of logarithm of Eq. (5.18). If the trained policy is optimal, that is, Qu = Q∗, all

the particles share the same weight. We summarize the sampling algorithm in Algo 4.
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Effective Sample Size: The Effective Sample Size (ESS), ESSu =
1

EQu [(wu)2]
, is a

popular metric to measure the variance of importance weights. ESS is often accompanied

by resampling trick [175] to mitigate deterioration of sample quality. ESS is also regarded

as a metric for quantifying goodness of sampler based on importance sampling. Low ESS

means that estimation or downstream tasks based on such sampling methods may suffer

from a high variance. ESS of most importance samplers is decreasing along the time.

Thanks to the adaptive control policy in PIS, we can quantify the ESS of PIS based on the

optimality of learned policy.

Theorem 4 (Corollary 7 [171]). If max
t,x
∥ut(x)− u∗

t (x)∥2 ≤
ϵ

T
, then

1

EQu [(wu)2]
≥ 1− ϵ.

Estimation of normalization constants: In most sampling problems we only have

access to the target density up to a normalization constant, denoted by µ̂ = Zµ. PIS can

still generate samples following the same protocol with new terminal cost Ψ̂ = log
µ0

µ̂
=

Ψ − logZ. The additional constant − logZ is independent of xT and thus does not af-

fect the optimal policy and the optimization of uθ. As a byproduct, we can estimate the

normalization constants.

Theorem 5. For any given policy u, the logarithm of normalization constant is bounded

below by

Eτ∼Qu [−Ŝu(τ)] ≤ logZ, (5.19)

where Ŝu(τ) =

∫ T

0

1

2
∥ut(xt)∥2 dt + u′

t(xt)dwt + Ψ̂(xT ). The equality holds only when

u = u∗. Moreover, for any sub-optimal policy, an unbiased estimation of Z using impor-

tance sampling is

Z = Eτ∼Qu [exp(−Ŝu(τ))]. (5.20)
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5.4 Experiments

In this section, we present empirical evaluations of PIS and the comparisons to several

baselines. We also provide details of practical implementations. Inspired by [164], we

conduct experiments for tasks of Bayesian inference and normalization constant estimation.

We consider three types of relevant methods. The first category is gradient-guided

MCMC methods without the annealing trick. It includes the Hamiltonian Monte Carlo (HMC) [148]

and No-U-Turn Sampler (NUTS) [174]. The second is Sequential Monte Carlo with an-

nealing trick (SMC), which is regarded as a state-of-the-art sampling algorithm [149] in

terms of sampling quality. We choose a standard instance of SMC samplers and the re-

cently proposed Annealed Flow Transport Monte Carlo (AFT) [164]. Both use default 10

temperature levels with a linear annealing scheme. We note that there are optimized SMC

variants that achieve better performance [149, 176, 177]. Since the introduction of ad-

vanced tricks, we exclude the comparison with those variants for fair comparison purposes.

We note PIS can also be augmented with an annealing trick, possible improvements for PIS

can be explored in the future. Last, the variational normalizing flow (VI-NF) [56] is also

included for comparison. We note that another popular line of sampling algorithms use

Stein-Variational Gradient Descent (SVGD) or other particle-based variational inference

approaches [178, 179]. We include the comparison and more discussions on SGVD due to

its significant difference. In our experiments, the number of steps N of MCMC algorithms

and the number of SDE time-discretization steps for PIS work as a proxy for benchmarking

computation times.

We also investigate the effects of two different network architectures for Path Integral

Sampler. The first one is a time-conditioned neural network without any prior information,

which we denote as PIS-NN, while the second one incorporates the gradient information

of the given energy function as in Eq. (5.16), denoted as PIS-Grad. When we have an

analytical form for the ground truth optimal policy, the policy is denoted as PIS-GT. The
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µ PIS-Grad AFT SMC NUTS HMC VI-NF PIS-NN

Figure 5.2: Sampling performance on rings-shape density function with 100 steps. The
gradient information can help PIS-Grad and MCMC algorithm improve sampling perfor-
mance.

subscript RW is to distinguish PIS with path integral importance weights Eq. (5.18) that use

Eq. (5.20) to estimate normalization constants from the ones without importance weights

that use the bound in Eq. (5.19) to estimate Z. For approaches without the annealing

trick, we take default N = 100 unless otherwise stated. With annealing, N steps are the

default for each temperature level, thus AFT and SMC rougly use 10 times more steps

compared with HMC and PIS. We include more details about hyperparameters, training

time, sampling efficiency, and more experiments with large N .

5.4.1 PIS-Grad vs PIS-NN: Importance of gradient guidance

We observed that the advantage of PIS-Grad over PIS-NN is clearer when the target density

has multiple modes as in the toy example shown in Fig. 5.2. The objective DKL(Q∥Q∗) is

known to have zero forcing. In particular, when the modes of the density are well separated

and Q is not expressive enough, minimizing DKL(Q∥Q∗) can drive Q(τ) to zero on some

area, even if Q∗(τ) > 0 [180]. PIS-NN and VI-NF generate very similar samples that

almost cover half the inner ring. The training objective function of VI-NF can also be

viewed as minimizing KL divergence between two trajectory distributions [70]. The added

noise during the process can encourage exploration but it is unlikely such noise only can

overcome the local minima. On the other hand, the gradient information can help cover

more modes and provide exploring directions.

70



5.4.2 Benchmarking datasets

Mode-separated mixture of Gaussian: We consider the mixture of Gaussian in 2-dimension.

We notice that when the Gaussian modes are not far away from each other, all methods work

well. However, when we reduce the variances of the Gaussian distributions and separate

the modes of Gaussian, the advantage of PIS becomes clear even in this low dimension

task. PIS generates samples that are visually indistinguishable from the target density.

Funnel distribution: We consider the popular testing distribution in MCMC litera-

ture [174, 181], the 10-dimensional Funnel distribution charaterized by

x0 ∼ N (0, 9), x1:9|x0 ∼ N (0, exp(x0)I).

This distribution can be pictured as a funnel - with x0 wide at the mouth of funnel, getting

smaller as the funnel narrows.

MG (d = 2) Funnel (d = 10) LGCP (d = 1600)
B S A B S A B S A

PISRW -GT -0.012 0.013 0.018 - - - - - -
PIS-NN -1.691 0.370 1.731 -0.098 5e-3 0.098 -92.4 6.4 92.62
PIS-Grad -0.440 0.024 0.441 -0.103 9e-3 0.104 -13.2 3.21 13.58
PISRW -
NN

-1.192 0.482 1.285 -0.018 7e-3 0.02 -60.8 4.81 60.99

PISRW -
Grad

-0.021 0.030 0.037 -0.008 9e-3 0.012 -1.94 0.91 2.14

AFT -0.509 0.24 0.562 -0.208 0.193 0.284 -3.08 1.59 3.46
SMC -0.362 0.293 0.466 -0.216 0.157 0.267 -435 14.7 436
NUTS -1.871 0.527 1.943 -0.835 0.257 0.874 -1.3e3 8.01 1.3e3
HMC -1.876 0.527 1.948 -0.835 0.257 0.874 -1.3e3 8.01 1.3e3
VI-NF -1.632 0.965 1.896 -0.236 0.0591 0.243 -77.9 5.6 78.2

Table 5.1: Benchmarking on mode separated mixture of Gaussian (MG), Funnel distribu-
tion and Log Gaussian Cox Process (LGCP) for estimation log normalization constants. B
and S stand for estimation bias and standard deviation among 100 runs and A2= B2 + S2.

Log Gaussian Cox Process: We further investigate the normalization constant estima-

tion problem for the challenging log Gaussian Cox process (LGCP), which is designed for

modeling the positions of Finland pine saplings. In LGCP [182], an underlying field λ of

positive real values is modeled using an exponentially-transformed Gaussian process. Then
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λ is used to parameterize Poisson points process to model the locations of pine saplings.

The posterior density is

λ(x) ∼ exp(−(x− µ)TK−1(x− µ)
2

)
∏
i∈d

exp(xiyi − α expxi), (5.21)

where d denotes the size of discretized grid and yi denotes observation information. The

modeling parameters, including normal distribution and α, follow [164].

Tab. 5.1 clearly shows the advantages of PIS for the above three datasets, and supports

the claim that importance weight helps improve the estimation of log normalization con-

stants, based on the comparison between PISRW and PIS. We also found that PIS-Grad

trained with gradient information outperforms PIS-NN. The difference is more obvious

in datasets that have well-separated modes, such as MG and LGCP, and less obvious on

unimodal distributions like Funnel.

In all cases, PISRW -Grad is better than AFT and SMC. Interestingly, even without an-

nealing and gradient information of target density, PISRW -NN can outperform SMC with

annealing trick and HMC kernel for the Funnel distribution.

5.4.3 Advantage of the specialized sampling algorithm

From the perspective of particles dynamics, most existing MCMC algorithms are invari-

ant to the target distribution. Therefore, particles are driven by gradient and random noise

in a way that is independent of the given target distribution. In contrast, PIS learns dif-

ferent strategies to combine gradient information and noise for different target densities.

The specialized sampling algorithm can generate samples more efficiently and shows bet-

ter performance empirically in our experiments. The advantage can be showed in various

datasets, from unimodal distributions like the Funnel distribution to multimodal distribu-

tions. The benefits and efficiency of PIS are more obvious in high dimensional settings as

we have shown.
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KL* µ ϕ η1 ψ η2 η3
VI-NF 175.6 ±4.5 24.2± 4.1 3.1± 0.05 14.6± 6.4 7e-2±5e-3 8.5e-2±3.5e-3
SMC 183.3 ±2.3 18.3± 2.1 0.32 ± 0.08 9.6 ± 1.2 0.12±0.05 0.15 ± 9e-3
SNF 181.8 ±0.75 6.3± 0.71 0.17±0.05 1.58 ± 0.36 0.11± 0.03 8.8e-2 ±8e-3

PIS-NN 171.3 ±0.61 5.2± 0.35 0.32±0.03 1.03 ± 0.23 5e-2±5e-3 8.7e-2±3e-3

Table 5.2: KL-divergences comparison among variational approaches of generated density
with target density in overall atom states distribution and five multimodal torsion angles.
We emphasize KL* denote the KL divergence between unnormalized distribution due to
lack of ground truth normalization constants. Mean and standard deviation are conducted
with five different random seeds.

Figure 5.3: Sampled Alanine dipeptide molecules

5.4.4 Alanine dipeptide

Building on the success achieved by flow models in the generation of asymptotically un-

biased samples from physics models [183], we investigate the applications in the sampling

of molecular structure from a simulation of Alanine dipeptide as introduced in [70]. The

target density of molecule is µ̂ = exp(−E(x[0:65])−
1

2

∥∥x[66:131]

∥∥2
).

We compare PIS with popular variational approaches used in generating samples from

the above model. More specifically, we consider VI-NF, and Stochastic Normalizing Flow (SNF) [70].

SNF is very close to AFT [164]. Both of them couple deterministic normalizing flow layers

and MCMC blocks except SNF uses an amortized structure. We show a generated molecu-

lar in Fig. 5.3 and quantitative comparison in terms of KL divergence in Tab. 5.2, including

overall atom states distribution and five multimodal torsion angles (backbone angles ϕ, ψ

and methyl rotation angles η1, η2, η3). We remark that unweighted samples are used to ap-

proximate the density of torsion angles and all approaches do not use gradient information.

Clearly, PIS gives lower divergence.
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Table 5.3: Estimation of log pθ(x) of a trained VAE.

B S
√

B2 + S2

VI-NF -2.3 0.76 2.42
AFT -1.7 0.95 1.96
SMC -10.6 2.01 10.79

PISRW -NN -1.9 0.81 2.06
PISRW -Grad -0.87 0.31 0.92

5.4.5 Sampling in Variational Autoencoder latent space

In this experiment, we investigate sampling in the latent space of a trained Variational Au-

toencoder (VAE). VAE aims to minimize DKL(q(x)qϕ(z|x)∥p(z)pθ(x|z)), where qϕ(z|x)

represents encoder and pθ for a decoder with latent variable z and data x. We investigate

the posterior distribution

z ∼ p(z)pθ(x|z). (5.22)

The normalization constant of such target unnormalized density function p(z)pθ(x|z) is

exactly the likelihood of data points pθ(x), which serves as an evaluation metric for the

trained VAE.

We investigate a vanilla VAE model trained with plateau loss on the binary MNIST [183]

dataset. For each distribution, we regard the average estimation from 10 long-run SMC with

1000 temperature levels as the ground truth normalization constant. We choose 100 images

randomly and run the various approaches on estimating normalization of those posterior

distributions in Eq. (5.22) and report the average performance in Tab. 5.3. PIS has a lower

bias and variance.

5.5 Conclusion

Contributions. In this work, we proposed a new sampling algorithm, Path Integral Sam-

pler, based on the connections between sampling and stochastic control. The control can

drive particles from a simple initial distribution to a target density perfectly when the pol-

icy is optimal for an optimal control problem whose terminal cost depends on the target
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distribution. Furthermore, we provide a calibration based on importance weights, ensuring

sampling quality even with sub-optimal policies.

Limitations. Compared with most popular non-learnable MCMC algorithms, PIS re-

quires training neural networks for the given distributions, which adds additional compu-

tational overhead, though this can be mitigated with amortization. Besides, the sampling

quality of PIS in finite steps depends on the optimality of trained network. Improper choices

of hyperparameters may lead to numerical issues and failure modes.
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CHAPTER 6

ACCELERATING SAMPLING FOR ISOTROPIC DIFFUSION MODELS

6.1 Introduction

The Diffusion model (DM) [7] is a generative modeling method developed recently that re-

lies on the basic idea of reversing a given simple diffusion process. A time-dependent score

function is learned for this purpose and DMs are thus also known as score-based models [4].

Compared with other generative models such as generative adversarial networks (GANs),

in addition to great scalability, the DM has the advantage of stable training is less hyper-

parameter sensitive [184, 185]. DMs have recently achieved impressive performances on

a variety of tasks, including unconditional image generation [7, 4, 186, 187], text condi-

tioned image generation [188, 11], text generation [12, 13], 3D point cloud generation [14],

inverse problem [15, 16], etc.

However, the remarkable performance of DMs comes at the cost of slow sampling; it

takes much longer time to produce high-quality samples compared with GANs. For in-

stance, the Denoising Diffusion Probabilistic Model (DDPM) [7] needs 1000 steps to gen-

erate one sample and each step requires evaluating the learning neural network once; this is

substantially slower than GANs [17, 18]. For this reason, there exist several studies aiming

at improve the sampling speed for DMs. One category of methods modify/optimize the for-

ward noising process such that backward denoising process can be more efficient [189, 4,

190, 191]. An important and effective instance is the Denoising Diffusion Implicit Model

(DDIM) [192] that uses a non-Markovian noising process. Another category of methods

speed up the numerical solver for stochastic differential equations (SDEs) or ordinary dif-

ferential equations (ODEs) associated with the DMs [193, 4, 194]. In [4], blackbox ODE

solvers are used to solve a marginal equivalent ODE known as the Probability Flow (PF),

76



Figure 6.1: Generated images with various DMs. Latent diffusion [186] (Left), 256× 256
image with text A shirt with inscription ”World peace” (15 NFE). VE diffusion [4] (Mid),
FFHQ 256× 256 (12 NFE). VP diffusion [7] (Right), CIFAR10 (7 NFE) and CELEBA (5
NFE).

for fast sampling. In [195], the authors combine DDIM with high order methods to solve

this ODE and achieve further acceleration. Note that the deterministic DDIM can also be

viewed as a time discretization of the PF as it matches the latter in the continuous limit [192,

195]. However, it is unclear why DDIM works better than generic methods such as Euler.

The objective of this work is to establish a principled discretization scheme for the

learned backward diffusion processes in DMs so as to achieve fast sampling. Since the

most expensive part in sampling a DM is the evaluation of the neural network that parame-

terizes the backward diffusion, we seek a discretization method that requires a small num-

ber of network function evaluation (NFE). We start with a family of marginal equivalent

SDEs/ODEs associated with DMs and investigate numerical error sources, which include

fitting error and discretization error. We observe that even with the same trained model,

different discretization schemes can have dramatically different performances in terms of

discretization error. We then carry out a sequence of experiments to systematically inves-

tigate the influences of different factors on the discretization error. We find out that the

Exponential Integrator (EI) [23] that utilizes the semilinear structure of the backward dif-

fusion has minimum error. To further reduce the discretization error, we propose to either

use high order polynomials to approximate the nonlinear term in the ODE or employ Runge
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Kutta methods on a transformed ODE. The resulting algorithms, termed Diffusion Expo-

nential Integrator Sampler (DEIS), achieve the best sampling quality with limited NFEs.

Our contributions are summarized as follows: 1) We investigate a family of marginal

equivalent SDEs/ODEs for fast sampling and conduct a systematic error analysis for their

numerical solvers. 2) We propose DEIS, an efficient sampler that can be applied to any

DMs to achieve superior sampling quality with a limited number of NFEs. DEIS can also

accelerate data log-likelihood evaluation. 3) We prove that the deterministic DDIM is a spe-

cial case of DEIS, justifying the effectiveness of DDIM from a discretization perspective.

4) We conduct comprehensive experiments to validate the efficacy of DEIS. For instance,

with a pre-trained model [4], DEIS is able to reach 4.17 FID with 10 NFEs, and 2.86 FID

with 20 NFEs on CIFAR10.

6.2 Background on Diffusion Models

A DM consists of a fixed forward diffusion (noising) process that adds noise to the data,

and a learned backward diffusion (denoising) process that gradually removes the added

noise. The backward diffusion is trained to match the forward one in probability law, and

when this happens, one can in principle generate perfect samples from the data distribution

by simulating the backward diffusion.

Forward noising diffusion: The forward diffusion of a DM for D-dimensional data is

a linear diffusion described by the stochastic differential equation (SDE) [37]

dx = Ftxdt+Gtdw, (6.1)

where Ft ∈ RD×D denotes the linear drift coefficient, Gt ∈ RD×D denotes the diffusion

coefficient, and w is a standard Wiener process. The diffusion Eq. (6.1) is initiated at the

training data and simulated over a fixed time window [0, T ]. Denote by pt(xt) the marginal

distribution of xt and by p0t(xt|x0) the conditional distribution from x0 to xt, then p0(x0)
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Table 6.1: Two popular SDEs, variance preserving SDE (VPSDE) and variance exploding
SDE (VESDE). The parameter αt is decreasing with α0 ≈ 1, αT ≈ 0, while σt is increas-
ing.

SDE Ft Gt µt Σt

VPSDE [7]
1

2

d logαt

dt
I

√
−d logαt

dt
I
√
αtI (1− αt)I

VESDE [4] 0

√
d[σ2

t ]

dt
I I σ2

t I

represents the underlying distribution of the training data. The simulated trajectories are

represented by {xt}0≤t≤T . The parameters Ft and Gt are chosen such that the conditional

marginal distribution p0t(xt|x0) is a simple Gaussian distribution, denoted asN (µtx0,Σt),

and the distribution π(xT ) := pT (xT ) is easy to sample from. Two popular SDEs in dif-

fusion models [4] are summarized in Tab. 6.1. Here we use matrix notation for Ft and

Gt to highlight the generality of our method. Our approach is applicable to any DMs, in-

cluding the Blurring diffusion models (BDM) [25, 26] and the critically-damped Langevin

diffusion (CLD) [196] where these coefficients are indeed non-diagonal matrices.

Backward denoising diffusion: Under mild assumptions [48, 4], the forward diffu-

sion Eq. (6.1) is associated with a reverse-time diffusion process

dx = [Ftxdt−GtG
T
t ∇ log pt(x)]dt+Gtdw, (6.2)

where w denotes a standard Wiener process in the reverse-time direction. The distribution

of the trajectories of Eq. (6.2) with terminal distribution xT ∼ π coincides with that of

Eq. (6.1) with initial distribution x0 ∼ p0, that is, Eq. (6.2) matches Eq. (6.1) in probability

law. Thus, in principle, we can generate new samples from the data distribution p0 by sim-

ulating the backward diffusion Eq. (6.2). However, to solve Eq. (6.2), we need to evaluate

the score function∇ log pt(x), which is not accessible.

Training: The basic idea of DMs is to use a time-dependent network sθ(x, t), known as

a score network, to approximate the score∇ log pt(x). This is achieved by score matching
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techniques [197, 198] where the score network sθ is trained by minimizing the denoising

score matching loss

L(θ) = Et∼Unif[0,T ]Ep(x0)p0t(xt|x0)[∥∇ log p0t(xt|x0)− sθ(xt, t)∥2Λt
]. (6.3)

Here ∇ log p0t(xt|x0) has a closed form expression as p0t(xt|x0) is a simple Gaussian

distribution, and Λt denotes a time-dependent weight. This loss can be evaluated using

empirical samples by Monte Carlo methods and thus standard stochastic optimization al-

gorithms can be used for training. We refer the reader to [7, 4] for more details on choices

of Λt and training techniques.

6.3 Fast Sampling with learned score models

Once the score network sθ(x, t) ≈ ∇ log pt(x) is trained, it can be used to generate new

samples by solving the backward SDE Eq. (6.2) with ∇ log pt(x) replaced by sθ(x, t).

It turns out there are infinitely many diffusion processes one can use. In this work, we

consider a family of SDEs

dx̂ = [Ftx̂−
1 + λ2

2
GtG

T
t sθ(x̂, t)]dt+ λGtdw, (6.4)

parameterized by λ ≥ 0. Here we use x̂ to distinguish the solution to the SDE associated

with the learned score from the ground truth x in Eqs. (6.1) and (6.2). When λ = 0,

Eq. (6.4) reduces to an ODE known as the probability flow ODE [4]. The reverse-time

diffusion Eq. (6.2) with an approximated score is a special case of Eq. (6.4) with λ = 1.

Denote the trajectories generated by Eq. (6.4) as {x̂∗
t}0≤t≤T and the marginal distributions

as p̂∗t . The following Proposition [5] holds.

Proposition 1. When sθ(x, t) = ∇ log pt(x) for all x, t, and p̂∗T = π, the marginal distri-

bution p̂∗t of Eq. (6.4) matches pt of the forward diffusion Eq. (6.1) for all 0 ≤ t ≤ T .
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pt(x) || ∇ log pt(x)− sθ(x, t) ||2

t = 0 t = T

Figure 6.2: Fitting error on a toy demo. Lighter areas represent higher probability region
(left) and larger fitting error (right).

The above result justifies the usage of Eq. (6.4) for generating samples. To generate a

new sample, one can sample x̂∗
T from π and solve Eq. (6.4) to obtain a sample x̂∗

0. How-

ever, in practice, exact solutions to Eq. (6.4) are not attainable and one needs to discretize

Eq. (6.4) over time to get an approximated solution. Denote the approximated solution

by x̂t and its marginal distribution by p̂t, then the error of the generative model, that is,

the difference between p0(x) and p̂0(x), is caused by two error sources, fitting error and

discretization error. The fitting error is due to the mismatch between the learned score net-

work sθ and the ground truth score ∇ log pt(x). The discretization error includes all extra

errors introduced by the discretization in numerically solving Eq. (6.4). To reduce dis-

cretization error, one needs to use smaller stepsize and thus larger number of steps, making

the sampling less efficient.

The objective of this work is to investigate these two error sources and develop a more

efficient sampling scheme from Eq. (6.4) with less errors. In this section, we focus on the

ODE approach with λ = 0. All experiments in this section are conducted based on VPSDE

over the CIFAR10 dataset unless stated otherwise.

6.3.1 Can we learn globally accurate score?

Since DMs demonstrate impressive empirical results in generating high-fidelity samples, it

is tempting to believe that the learned score network is able to fit the score of data distribu-

tion very well, that is, sθ(x, t) ≈ ∇ log pt(x) for almost all x ∈ RD and t ∈ [0, T ]. This

is, however, not true; the fitting error can be arbitrarily large on some x, t as illustrated in a
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simple example below. In fact, the learned score models are not accurate for most x, t.

Consider a generative modeling task over 1-dimensional space, i.e., D = 1. The data

distribution is a Gaussian concentrated with a very small variance. We plot the fitting

error1 between a score model trained by minimizing Eq. (6.3) and the ground truth score

in Fig. 6.2. As can be seen from the figure, the score model works well in the region

where pt(x) is large but suffers from large error in the region where pt(x) is small. This

observation can be explained by examining the training loss Eq. (6.3). In particular, the

training data of Eq. (6.3) are sampled from pt(x). In regions with a low pt(x) value,

the learned score network is not expected to work well due to the lack of training data.

This phenomenon becomes even clearer in realistic settings with high-dimensional data.

The region with high pt(x) value is extremely small since realistic data is often sparsely

distributed in RD; it is believed real data such as images concentrate on an intrinsic low

dimensional manifold [199, 200, 195].

As a consequence, to ensure x̂0 is close to x0, we need to make sure x̂t stays in the

high pt(x) region for all t. This makes fast sampling from Eq. (6.4) a challenging task as

it prevents us from taking an aggressive step size that is likely to take the solution to the

region where the fitting error of the learned score network is large. A good discretization

scheme for Eq. (6.4) should be able to help reduce the impact of the fitting error of the

score network during sampling.

6.3.2 Discretization error

We next investigate the discretization error of solving the probability flow ODE (λ = 0)

dx̂

dt
= Ftx̂−

1

2
GtG

T
t sθ(x̂, t). (6.5)

The exact solution to this ODE is
1Because the fitting error explodes when t→ 0, we have scaled the fitting error for better visualization.

82



(a) (b) (c) (d)

Figure 6.3: Fig. 6.3a shows average pixel difference ∆p between ground truth x̂∗
0 and

numerical solution x̂0 from Euler method and EI method. Fig. 6.3b depicts approximation
error ∆s along ground truth solutions. Fig. 6.3d shows ∆s can be dramatically reduced if
the parameterization ϵθ(x, t) instead of sθ(x, t) is used. This parameterization helps the EI
method outperform the Euler method in Fig. 6.3c.

x̂t = Ψ(t, s)x̂s +

∫ t

s

Ψ(t, τ)[−1

2
GτG

T
τ sθ(x̂τ , τ)]dτ, (6.6)

where Ψ(t, s) satisfying
∂

∂t
Ψ(t, s) = FtΨ(t, s),Ψ(s, s) = I is known as the transition

matrix from time s to t associated with Fτ . Eq. (6.5) is a semilinear stiff ODE [23] that

consists of a linear term Ftx̂ and a nonlinear term sθ(x̂, t). There exist many different

numerical solvers for Eq. (6.5) associated with different discretization schemes to approx-

imate Eq. (6.6) [201]. As the discretization step size goes to zero, the solutions obtained

from all these methods converge to that of Eq. (6.5). However, the performances of these

methods can be dramatically different when the step size is large. On the other hand, to

achieve fast sampling with Eq. (6.5), we need to approximately solve it with a small num-

ber of discretization steps, and thus large step size. This motivates us to develop an efficient

discretizaiton scheme that fits with Eq. (6.5) best. In the rest of this section, we systemat-

ically study the discretization error in solving Eq. (6.5), both theoretically and empirically

with carefully designed experiments. Based on these results, we develop an efficient algo-

rithm for Eq. (6.5) that requires a small number of NFEs.

Ingredient 1: Exponential Integrator over Euler method. The Euler method is the

most elementary explicit numerical method for ODEs and is widely used in numerical

softwares [202]. When applied to Eq. (6.5), the Euler method reads
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x̂t−∆t = x̂t − [Ftx̂t −
1

2
GtG

T
t sθ(x̂t, t)]∆t. (6.7)

This is used in many existing works in DMs [4, 196]. This approach however has low

accuracy and is sometimes unstable when the stepsize is not sufficiently small. To improve

the accuracy, we propose to use the Exponential Integrator (EI), a method that leverages

the semilinear structure of Eq. (6.5). When applied to Eq. (6.5), the EI reads

x̂t−∆t = Ψ(t−∆t, t)x̂t + [

∫ t−∆t

t

−1

2
Ψ(t−∆t, τ)GτG

T
τ dτ ]sθ(x̂t, t). (6.8)

It is effective if the nonlinear term sθ(x̂t, t) does not change much along the solution. In

fact, for any given ∆t, Eq. (6.8) solves Eq. (6.5) exactly if sθ(x̂t, t) is constant over the

time interval [t−∆t, t].

To compare the EI Eq. (6.8) and the Euler method Eq. (6.7), we plot in Fig. 6.3a the

average pixel difference ∆p between the ground truth x̂∗
0 and the numerical solution x̂0

obtained by these two methods for various number N of steps. Surprisingly, the EI method

performs worse than the Euler method.

This observation suggests that there are other major factors that contribute to the error

∆p. In particular, the condition that the nonlinear term sθ(x̂t, t) does not change much

along the solution assumed for the EI method does not hold. To see this, we plot the

score approximation error ∆s(τ) = ||sθ(xτ , τ) − sθ(xt, t)||2, τ ∈ [t − ∆t, t] along the

exact solution {x̂∗
t} to Eq. (6.5) in Fig. 6.3b2. It can be seen that the approximation error

grows rapidly as t approaches 0. This is not strange; the score of realistic data distribution

∇ log pt(x) should change rapidly as t→ 0 [196].

Ingredient 2: ϵθ(x, t) over sθ(x, t). The issues caused by rapidly changing score

∇ log pt(x) do not only exist in sampling, but also appear in the training of DMs. To

address these issues, a different parameterization of the score network is used. In particular,

2The {x̂∗
t } are approximated by solving ODE with high accuracy solvers and sufficiently small step size.

For better visualization, we have removed the time discretization points in Fig. 6.3b and Fig. 6.3d, since
∆s = 0 at these points and becomes negative infinity in log scale.
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it is found that the parameterization [7]∇ log pt(x) ≈ −L−T
t ϵθ(x, t), where Lt can be any

matrix satisfying LtL
T
t = Σt, leads to significant improvements of accuracy. The rationale

of this parameterization is based on a reformulation of the training loss Eq. (6.3) as [7]

L̄(θ) = Et∼Unif[0,T ]Ep(x0),ϵ∼N (0,I)[∥ϵ− ϵθ(µtx0 +Ltϵ, t)∥2Λ̄t
] (6.9)

with Λ̄t = L−1
t ΛtL

−T
t . The network ϵθ tries to follow ϵ which is sampled from a stan-

dard Gaussian and thus has a small magnitude. In comparison, the parameterization sθ =

−L−T
t ϵθ can take large value as Lt → 0 as t approaches 0. It is thus better to approximate

ϵθ than sθ with a neural network.

We adopt this parameterization and rewrite Eq. (6.5) as

dx̂

dt
= Ftx̂+

1

2
GtG

T
t L

−T
t ϵθ(x̂, t). (6.10)

Applying the EI to Eq. (6.10) yields

x̂t−∆t = Ψ(t−∆t, t)x̂t + [

∫ t−∆t

t

1

2
Ψ(t−∆t, τ)GτG

T
τ L

−T
τ dτ ]ϵθ(x̂t, t). (6.11)

Compared with Eq. (6.8), Eq. (6.11) employs−L−T
τ ϵθ(xt, t) instead of sθ(xt, t) = −L−T

t ϵθ(xt, t)

to approximate the score sθ(xτ , τ) over the time interval τ ∈ [t−∆t, t]. This modification

from L−T
t to L−T

τ turns out to be crucial; the coefficient L−T
τ changes rapidly over time.

This is verified by Fig. 6.3d where we plot the score approximation error ∆s when the

parameterization ϵθ is used, from which we see the error ∆s is greatly reduced compared

with Fig. 6.3b. With this modification, the EI method significantly outperforms the Euler

method as shown in Fig. 6.3c. Next we develop several fast sampling algorithms, all coined

as the Diffusion Exponential Integrator Sampler (DEIS), based on Eq. (6.11), for DMs.

Interestingly, the discretization Eq. (6.11) based on EI coincides with the popular de-

terministic DDIM when the forward diffusion Eq. (6.1) is VPSDE [192] as summarized
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Figure 6.4: Fig. 6.4a shows relative changes of ϵθ(x̂∗
t , t) with respect to t are relatively

small, especially when t > 0.15. Fig. 6.4b depicts the extrapolation error with N = 10.
High order polynomial can reduce approximation error effectively. Fig. 6.4c illustrates
effects of extrapolation. When N is small, higher order polynomial approximation leads to
better samples.

below.

Proposition 2. When the forward diffusion Eq. (6.1) is set to be VPSDE (Ft,Gt are speci-

fied in Tab. 6.1), the EI discretization Eq. (6.11) becomes

x̂t−∆t =

√
αt−∆t

αt

x̂t + [
√

1− αt−∆t −
√
αt−∆t

αt

√
1− αt]ϵθ(x̂t, t), (6.12)

which coincides with the deterministic DDIM sampling algorithm.

Our result provides an alternative justification for the efficacy of DDIM for VPSDE

from a numerical discretization point of view. Unlike DDIM, our method Eq. (6.11) can be

applied to any diffusion SDEs to improve the efficiency and accuracy of discretizations.

In the discretization Eq. (6.11), we use ϵθ(x̂t, t) to approximate ϵθ(x̂τ , τ) for all τ ∈

[t − ∆t, t], which is a zero order approximation. Comparing Eq. (6.11) and Eq. (6.6) we

see that this approximation error largely determines the accuracy of discretization. One

natural question to ask is whether it is possible to use a better approximation of ϵθ(x̂τ , τ)

to further improve the accuracy? We answer this question affirmatively below with an

improved algorithm.

Ingredient 3: Polynomial extrapolation of ϵθ. Before presenting our algorithm, we

investigate how ϵθ(xt, t) evolves along a ground truth solution {x̂t} from t = T to t = 0.

We plot the relative change in 2-norm of ϵθ(xt, t) in Fig. 6.4a. It reveals that for most
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time instances the relative change is small. This motivates us to use previous (backward)

evaluations of ϵθ up to t to extrapolate ϵθ(xτ , τ) for τ ∈ [t−∆t, t].

Inspired by the high-order polynomial extrapolation in linear multistep methods, we

propose to use high-order polynomial extrapolation of ϵθ in our EI method. To this end,

consider time discretization {ti}Ni=0 where t0 = 0, tN = T . For each i, we fit a polynomial

Pr(t) of degree r with respect to the interpolation points (ti+j, ϵθ(x̂ti+j
, ti+j)), 0 ≤ j ≤ r.

This polynomial Pr(t) has explicit expression

Pr(t) =
r∑

j=0

[
∏
k ̸=j

t− ti+k

ti+j − ti+k

]ϵθ(x̂ti+j
, ti+j). (6.13)

We then use Pr(t) to approximate ϵθ(xτ , τ) over the interval [ti−1, ti]. For i > N − r, we

need to use polynomials of lower order to approximate ϵθ. To see the advantages of this

approximation, we plot the approximate error ∆ϵ(t) = ||ϵθ(xt, t) − Pr(t)||2 of ϵθ(xt, t)

by Pr(t) along ground truth trajectories {x̂∗
t} in Fig. 6.4b. It can be seen that higher order

polynomials can reduce approximation error compared with the case r = 0 which uses zero

order approximation as in Eq. (6.11).

As in the EI method Eq. (6.11) that uses a zero order approximation of the score in

Eq. (6.6), the update step of order r is obtained by plugging the polynomial approximation

Eq. (6.13) into Eq. (6.6). It can be written explicitly as

x̂ti−1
= Ψ(ti−1, ti)x̂ti +

r∑
j=0

[Cijϵθ(x̂ti+j
, ti+j)] (6.14)

Cij =

∫ ti−1

ti

1

2
Ψ(ti−1, τ)GτG

T
τ L

−T
τ

∏
k ̸=j

[
τ − ti+k

ti+j − ti+k

]dτ. (6.15)

We remark that the update in Eq. (6.14) is a linear combination of x̂ti and ϵθ(x̂ti+j
, ti+j),

where the weights Ψ(ti−1, ti) and Cij are calculated once for a given forward diffusion Eq. (6.1)

and time discretization, and can be reused across batches. For some diffusion Eq. (6.1),

Ψ(ti−1, ti),Cij have closed form expression. Even if analytic formulas are not available,

87



one can use high accuracy solver to obtain these coefficients. In DMs (e.g., VPSDE and

VESDE), Eq. (6.15) are normally 1-dimensional or 2-dimensional integrations and are thus

easy to evaluate numerically. This approach resembles the classical Adams–Bashforth [23]

method, thus we term it tAB-DEIS. Here we use t to differentiate it from other DEIS algo-

rithms we present later in Sec. 6.4 based on a time-scaled ODE.

The tAB-DEIS algorithm is summarized in Algo 5. Note that the deterministic DDIM

is a special case of tAB-DEIS for VPSDE with r = 0. The polynomial approximation used

in DEIS improves the sampling quality significantly when sampling steps N is small, as

shown in Fig. 6.4c.

Algorithm 5 tAB-DEIS

Input: {ti}Ni=0, r

Instantiate: x̂tN , Empty ϵ-buffer

Calculate weights Ψ,C based on Eq. (6.15)

for i in N,N − 1, · · · , 1 do

ϵ-buffer.append(ϵθ(x̂ti , ti))

x̂ti−1
← Eq. (6.14) with Ψ,C, ϵ-buffer

end for

88



Figure 6.5: Ablation study and comparison with other samplers. We notice switching from
Euler to Exponential Integrator worsens FID, which we explore and explain Ingredient 2 in
Sec. 6.3. With EI, ϵθ, polynomial extrapolation and optimizing timestamps can significantly
improve the sampling quality. Compared with other samplers, ODE sampler based on
RK45 [4], SDE samplers based on Euler-Maruyama (EM) [4] and SDE adaptive step size
solver [193], DEIS can converge much faster.

6.4 Exponential Integrator: simplify probability Flow ODE

Next we present a different perspective to DEIS based on ODE transformations. The prob-

ability ODE Eq. (6.10) can be transformed into a simple non-stiff ODE, and then off-the-

shelf ODE solvers can be applied to solve the ODE effectively. To this end, we introduce

variable ŷt := Ψ(t, 0)x̂t and rewrite Eq. (6.10) into

dŷ

dt
=

1

2
Ψ(t, 0)GtG

T
t L

−T
t ϵθ(Ψ(0, t)ŷ, t). (6.16)

Note that, departing from Eq. (6.10), Eq. (6.16) does not possess semi-linear structure.

Thus, we can apply off-the-shelf ODE solvers to Eq. (6.16) without accounting for the

semi-linear structure in algorithm design. This transformation Eq. (6.16) can be further im-

proved by taking into account the analytical form of Ψ,Gt,Lt. Here we present treatment

for VPSDE; the results can be extended to other (scalar) DMs such as VESDE.

Proposition 3. For the VPSDE, with ŷt =

√
α0

αt

x̂t and the time-scaling β(t) =
√
α0(

√
1− αt

αt

−
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√
1− α0

α0

), Eq. (6.10) can be transformed into

dŷ

dρ
= ϵθ(

√
αβ−1(ρ)

α0

ŷ, β−1(ρ)), ρ ∈ [β(0), β(T )]. (6.17)

After transformation, the ODE becomes a black-box ODE that can be solved by generic

ODE solvers efficiently since the stiffness caused by the semi-linear structure is removed.

This is the core idea of the variants of DEIS we present next.

Based on the transformed ODE Eq. (6.17) and the above discussions, we propose two

variants of the DEIS algorithm: ρRK-DEIS when applying classical RK methods, and

ρAB-DEIS when applying Adams-Bashforth methods. We remark that the difference be-

tween tAB-DEIS and ρAB-DEIS lies in the fact that tAB-DEIS fits polynomials in t which

may not be polynomials in ρ. Thanks to simplified ODEs, DEIS enjoys the convergence

order guarantee as its underlying RK

6.5 Experiments

Abalation study: As shown in Fig. 6.5, ingredients introduced in Sec. 6.3.2 can signif-

icantly improve sampling efficiency on CIFAR10. Besides, DEIS outperforms standard

samplers by a large margin.

DEIS variants: We include performance evaluations of various DEIS with VPSDE

on CIFAR10 in Tab. 6.2, including DDIM, ρRK-DEIS, ρAB-DEIS and tAB-DEIS. For

ρRK-DEIS, we find Heun’s method works best among second-order RK methods, denoted

as ρ2Heun, Kutta method for third order, denoted as ρ3Kutta, and classic fourth-order RK

denoted as ρ4RK. For Adam-Bashforth methods, we consider fitting 1, 2, 3 order poly-

nomial in t, ρ, denoted as tAB and ρAB respectively. We observe that almost all DEIS

algorithms can generate high-fidelity images with small NFE. Also, note that DEIS with

high-order polynomial approximation can significantly outperform DDIM; the latter coin-

cides with the zero-order polynomial approximation. We also find the performance of high
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Figure 6.6: Generated samples of DDIM and DEIS with unconditional 256×256 ImageNet
pretrained model [187]

Figure 6.7: Sample quality measured by FID ↓ of different sampling algorithms with pre-
trained DMs.

order ρRK-DEIS is not satisfying when NFE is small but competitive as NFE increases. It

is within expectation as high order methods enjoy smaller local truncation error and total

accumulated error when small step size is used and the advantage is vanishing as we reduce

the number of steps.

More comparisons: We conduct more comparisons with popular sampler for DMs, in-

cluding DDPM, DDIM, PNDM [203], A-DDIM [191], FastDPM [204], and Ito-Taylor [194].

We further propose Improved PNDM (iPNDM) that avoids the expensive warming start,

which leads to better empirical performance. We conduct comparison on image datasets,

including 64 × 64 CelebA [205] with pre-trained model from [192], class-conditioned

64 × 64 ImageNet [199] with pre-trained model [187], 256 × 256 LSUN Bedroom [140]

with pre-trained model [187]. We compare DEIS with selected baselines in Fig. 6.7 quan-

titatively, and show empirical samples in Fig. 6.6.
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Table 6.2: More results of DEIS for VPSDE on CIFAR10 with limited NFE. For ρRK-
DEIS, the upper right number indicates extra NFEs used. Bold numbers denote the best
performance achieved with similar NFE budgets. For a fair comparison, we report numbers
based on their best time discretization for different algorithms with different NFE. †: The
concurrent work [132] applies Heun method to a rescaled DM. This is a special case of
ρ2Heun.

FID for various DEIS
NFE DDIM ρ2Heun† ρ3Kutta ρ4RK ρAB1 ρAB2 ρAB3 tAB1 tAB2 tAB3

5 26.91 108+1 185+1 193+3 22.28 21.53 21.43 19.72 16.31 15.37
10 11.14 14.72 13.19+2 28.65+2 7.56 6.72 6.50 6.09 4.57 4.17
15 7.06 4.89+1 5.88 6.88+1 4.69 4.16 3.99 4.29 3.57 3.37
20 5.47 3.50 2.97+1 3.92 3.70 3.32 3.17 3.54 3.05 2.86
50 3.27 2.60 2.55+1 2.57+2 2.70 2.62 2.59 2.67 2.59 2.57

6.6 Conclusion

In this work, we consider fast sampling problems for DMs. We present the diffusion ex-

ponential integrator sampler (DEIS), a fast sampling algorithm for DMs based on a novel

discretization scheme of the backward diffusion process. In addition to its theoretical ele-

gance, DEIS also works efficiently in practice; it is able to generate high-fidelity samples

with less than 10 NFEs. Exploring better extrapolation may further improve sampling qual-

ity.
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CHAPTER 7

ACCELERATING SAMPLING FOR NON-ISOTROPIC DIFFUSION MODELS

7.1 Introduction

Generative models based on diffusion models (DMs) have experienced rapid developments

in the past few years and show competitive sample quality compared with generative ad-

versarial networks (GANs) [187, 11, 186], competitive negative log likelihood compared

with autoregressive models in various domains and tasks [206, 15]. Besides, DMs en-

joy other merits such as stable and scalable training, and mode-collapsing resiliency [206,

189]. However, slow and expensive sampling prevents DMs from further application in

more complex and higher dimension tasks. Once trained, GANs only forward pass neural

networks once to generate samples, but the vanilla sampling method of DMs needs 1000 or

even 4000 steps [189, 7, 4] to pull noise back to the data distribution, which means thou-

sands of neural networks forward evaluations. Therefore, the generation process of DMs is

several orders of magnitude slower than GANs.

How to speed up sampling of DMs has received significant attention. Building on the

seminal work by [4] on the connection between stochastic differential equations (SDEs)

and diffusion models, a promising strategy based on probability flows [4] has been de-

veloped. The probability flows are ordinary differential equations (ODE) associated with

DMs that share equivalent marginal with SDE. Simple plug-in of off-the-shelf ODE solvers

can already achieve significant acceleration compared to SDEs-based methods [4]. The ar-

guably most popular sampling method is denoising diffusion implicit model (DDIM) [192],

which includes both deterministic and stochastic samplers, and both show tremendous im-

provement in sampling quality compared with previous methods when only a small number

of steps is used for the generation.
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Although significant improvements of the DDIM in sampling efficiency have been ob-

served empirically, the understanding of the mechanism of the DDIM is still lacking. First,

why does solving probability flow ODE provide much higher sample quality than solving

SDEs, when the number of steps is small? Second, it is shown that stochastic DDIM re-

duces to marginal-equivalent SDE [207], but its discretization scheme and mechanism of

acceleration are still unclear. Finally, can we generalize DDIMs to other DMs and achieve

similar or even better acceleration results?

In this work, we conduct a comprehensive study to answer the above questions, so

that we can generalize and improve DDIM. We start with an interesting observation that

the DDIM can solve corresponding SDEs/ODE exactly without any discretization error

in finite or even one step when the training dataset consists of only one data point. For

deterministic DDIM, we find that the added noise in perturbed data along the diffusion is

constant along an exact solution of probability flow ODE (see Prop 4). Besides, provided

only one evaluation of log density gradient (a.k.a. score), we are already able to recover

accurate score information for any datapoints, and this explains the acceleration of stochas-

tic DDIM for SDEs (see Prop 6). Based on this observation, together with the manifold

hypothesis, we present one possible interpretation to explain why the discretization scheme

used in DDIMs is effective on realistic datasets (see Fig. 7.2). Equipped with this new inter-

pretation, we extend DDIM to general DMs, which we coin generalized DDIM (gDDIM).

With only a small but delicate change of the score model parameterization during sam-

pling, gDDIM can accelerate DMs based on general diffusion processes. Specifically, we

verify the sampling quality of gDDIM on Blurring diffusion models (BDM) [25, 26] and

critically-damped Langevin diffusion (CLD) [196] in terms of Fréchet inception distance

(FID) [139].

To summarize, we have made the following contributions: 1) We provide an interpre-

tation for the DDIM and unravel its mechanism. 2) The interpretation not only justifies the

numerical discretization of DDIMs but also provides insights into why ODE-based sam-
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plers are preferred over SDE-based samplers when NFE is low. 3) We propose gDDIM, a

generalized DDIM that can accelerate a large class of DMs deterministically and stochasti-

cally. 4) We show by extensive experiments that gDDIM can drastically improve sampling

quality/efficiency almost for free. Specifically, when applied to CLD, gDDIM can achieve

an FID score of 2.86 with only 27 steps and 2.26 with 50 steps. gDDIM has more than 20

times acceleration on BDM compared with the original samplers.

The rest of this paper is organized as follows. In Sec. 7.2 we provide a brief inntroduc-

tion to diffusion models. In Sec. 7.3 we present an interpretation of the DDIM that explains

its effectiveness in practice. Built on this interpretation, we generalize DDIM for general

diffusion models in Sec. 7.4.

7.2 Background

In this section, we provide a brief introduction to diffusion models (DMs). Most DMs are

built on two diffusion processes in continuous-time, one forward diffusion known as the

noising process that drives any data distribution to a tractable distribution such as Gaussian

by gradually adding noise to the data, and one backward diffusion known as the denoising

process that sequentially removes noise from noised data to generate realistic samples. The

continuous-time noising and denoising processes are modeled by stochastic differential

equations (SDEs) [37].

In particular, the forward diffusion is a linear SDE with state u(t) ∈ RD

du = Ftudt+Gtdw, t ∈ [0, T ] (7.1)

where Ft,Gt ∈ RD×D represent the linear drift coefficient and diffusion coefficient respec-

tively, and w is a standard Wiener process. When the coefficients are piece-wise continu-

ous, Eq. (7.1) admits a unique solution [208]. Denote by pt(u) the distribution of the so-

lutions {u(t)}0≤t≤T (simulated trajectories) to Eq. (7.1) at time t, then p0 is determined by
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Figure 7.1: Importance of Kt for score parameterization sθ(u, t) = −K−T
t ϵθ(u, t) and

acceleration of diffusion sampling with probability flow ODE. Trajectories of probability
ODE for CLD [196] at random pixel locations (Left). Pixel value and output of ϵθ in v
channel with choice Kt = Lt [196] along the trajectory (Mid). Output of ϵθ in x,v chan-
nels with our choice Rt (Right). The smooth network output along trajectories enables
large stepsize and thus sampling acceleration. gDDIM based on the proper parameteriza-
tion of Kt can accelerate more than 50 times compared with the naive Euler solver (Lower
row).

the data distribution and pT is a (approximate) Gaussian distribution. That is, the forward

diffusion Eq. (7.1) starts as a data sample and ends as a Gaussian random variable. This

can be achieved with properly chosen coefficients Ft,Gt. Thanks to linearity of Eq. (7.1),

the transition probability pst(u(t)|u(s)) from u(s) to u(t) is a Gaussian distribution. For

convenience, denote p0t(u(t)|u(0)) by N (µtu(0),Σt) where µt,Σt ∈ RD×D.

The backward process from u(T ) to u(0) of Eq. (7.1) is the denoising process. It can

be characterized by the backward SDE simulated in reverse-time direction [4, 48]

du = [Ftudt−GtG
T
t ∇ log pt(u)]dt+Gtdw̄, (7.2)

where w̄ denotes a standard Wiener process running backward in time. Here∇ log pt(u) is
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known as the score function. When Eq. (7.2) is initialized with u(T ) ∼ pT , the distribution

of the simulated trajectories coincides with that of the forward diffusion Eq. (7.1). Thus,

u(0) of these trajectories are unbiased samples from p0; the backward diffusion Eq. (7.2)

is an ideal generative model.

In general, the score function ∇ log pt(u) is not accessible. In diffusion-based gener-

ative models, a time-dependent network sθ(u, t), known as the score network, is used to

fit the score ∇ log pt(u). One effective approach to train sθ(u, t) is the denoising score

matching (DSM) technique [4, 7, 198] that seeks to minimize the DSM loss

Et∼U [0,T ]Eu(0),u(t)|u(0)[∥∇ log p0t(u(t)|u(0))− sθ(u(t), t)∥2Λt
], (7.3)

where U [0, T ] represents the uniform distribution over the interval [0, T ]. The time-dependent

weight Λt is chosen to balance the trade-off between sample fidelity and data likelihood of

learned generative model [206]. It is discovered in [7] that reparameterizing the score net-

work by

sθ(u, t) = −K−T
t ϵθ(u, t) (7.4)

with KtK
T
t = Σt leads to better sampling quality. In this parameterization, the network

tries to predict directly the noise added to perturb the original data. Invoking the expression

N (µtu(0),Σt) of p0t(u(t)|u(0)), this parameterization results in the new DSM loss

L(θ) = Et∼U [0,T ]Eu(0)∼p0,ϵ∼N (0,ID)[∥ϵ− ϵθ(µtu(0) +Ktϵ, t)∥2K−1
t ΛtK

−T
t

]. (7.5)

Sampling: After the score network sθ is trained, one can generate samples via the

backward SDE Eq. (7.2) with a learned score, or the marginal equivalent SDE/ODE [4, 5,

207]

du = [Ftu−
1 + λ2

2
GtG

T
t sθ(u, t)]dt+ λGtdw, (7.6)

where λ ≥ 0 is a free parameter. Regardless of the value of λ, the exact solutions to
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Eq. (7.6) produce unbiased samples from p0(u) if sθ(u, t) = ∇ log pt(u) for all t,u. When

λ = 1, Eq. (7.6) reduces to reverse-time diffusion in Eq. (7.2). When λ = 0, Eq. (7.6) is

known as the probability flow ODE [4]

du = [Ftu−
1

2
GtG

T
t sθ(u, t)]dt. (7.7)

Isotropic diffusion and DDIM: Most existing DMs are isotropic diffusions. A popular

DM is Denoising diffusion probabilistic modeling (DDPM) [7]. For a given data distribu-

tion pdata(x), DDPM has u = x ∈ Rd and sets p0(u) = pdata(x). Though originally

proposed in the discrete-time setting, it can be viewed as a discretization of a continuous-

time SDE with parameters

Ft :=
1

2

d logαt

dt
Id, Gt :=

√
−d logαt

dt
Id (7.8)

for a decreasing scalar function αt satisfying α0 = 1, αT = 0. Here Id represents the

identity matrix of dimension d. For this SDE, Kt is always chosen to be
√
1− αtId.

The sampling scheme proposed in DDPM is inefficient; it requires hundreds or even

thousands of steps, and thus number of score function evaluations (NFEs), to generate

realistic samples. A more efficient alternative is the Denoising diffusion implicit model-

ing (DDIM) proposed in [192]. It proposes a different sampling scheme over a grid {ti}

x(ti−1) =

√
αti−1

αti

x(ti)+(
√
1− αti−1

− σ2
ti−

√
1− αti

√
αti−1

αti

)ϵθ(x(ti), ti)+σtiϵ, (7.9)

where {σti} are hyperparameters and ϵ ∼ N (0, Id). DDIM can generate reasonable sam-

ples within 50 NFEs. For the special case where σti = 0, it is recently discovered in [207]

that Eq. (7.9) coincides with the numerical solution to Eq. (7.7) using an advanced dis-

cretization scheme known as the exponential integrator (EI) that utilizes the semi-linear

structure of Eq. (7.7).
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CLD and BDM: [196] propose critically-dampled Langevin diffusion (CLD), a DM

based on an augmented diffusion with an auxiliary velocity term. More specifically, the

state of the diffusion in CLD is of the form u(t) = [x(t),v(t)] ∈ R2d with velocity variable

v(t) ∈ Rd. The CLD employs the forward diffusion Eq. (7.1) with coefficients

Ft :=

0 βM−1

β −ΓβM−1

⊗ Id, Gt :=

0 0

0 −ΓβM−1

⊗ Id. (7.10)

Here Γ > 0, β > 0,M > 0 are hyperparameters. Compared with most other DMs such

as DDPM that inject noise to the data state x directly, the CLD introduces noise to the

data state x through the coupling between v and x as the noise only affects the velocity

component v directly. Another interesting DM is Blurring diffusion model (BDM) [25]. It

can be shown the forward process in BDM can be formulated as a SDE with

Ft :=
d log[V αtV

T ]

dt
, Gt :=

√
dσ2

t

dt
− Ftσ2

t − σ2
tFt, (7.11)

where V T denotes a Discrete Cosine Transform (DCT) and V denotes the Inverse DCT.

Diagonal matrices αt,σt are determined by frequencies information and dissipation time.

Though it is argued that inductive bias in CLD and BDM can benefit diffusion model [196,

25], non-isotropic DMs are not easy to accelerate. Compared with DDPM, CLD intro-

duces significant oscillation due to x-v coupling while only inefficient ancestral sampling

algorithm supports BDM [25].

7.3 Revisit DDIM: Gap between the exact solution and numerical solution

The complexity of sampling from a DM is proportional to the NFEs used to numerically

solve Eq. (7.6). To establish a sampling algorithm with a small NFEs, we ask the bold

question:

Can we generate samples exactly from a DM with finite steps if the score function is precise?
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To gain some insights into this question, we start with the simplest scenario where the

training dataset consists of only one data point x0. It turns out that accurate sampling from

diffusion models on this toy example is not that easy, even if the exact score function is

accessible. Most well-known numerical methods for Eq. (7.6), such as Runge Kutta (RK)

for ODE, Euler-Maruyama (EM) for SDE, are accompanied by discretization error and

cannot recover the single data point in the training set unless an infinite number of steps

are used. Surprisingly, DDIMs can recover the single data point in this toy example in one

step.

Built on this example, we show how the DDIM can be obtained by solving the SDE/ODE Eq. (7.6)

with proper approximations. The effectiveness of DDIM is then explained by justifying the

usage of those approximations for general datasets at the end of this section.

ODE sampling We consider the deterministic DDIM, that is, Eq. (7.9) with σti = 0. In

view of Eq. (7.8), the score network Eq. (7.4) is sθ(u, t) = − ϵθ(u, t)√
1− αt

. To differentiate

between the learned score and the real score, denote the ground truth version of ϵθ by ϵGT.

In our toy example, the following property holds for ϵGT.

Proposition 4. Assume p0(u) is a Dirac distribution. Let u(t) be an arbitrary solution to

the probability flow ODE Eq. (7.7) with coefficient Eq. (7.8) and the ground truth score,

then ϵGT(u(t), t) = −
√
1− αt∇ log pt(u(t)) remains constant, which is ∇ log pT (u(T )),

along u(t).

We remark that even though ϵGT(u(t), t) remains constant along an exact solution, the

score ∇ log pt(u(t)) is time-varying. This underscores the advantage of the parameteriza-

tion ϵθ over sθ. Inspired by Prop 4, we devise a sampling algorithm as follows that can

recover the exact data point in one step for our toy example. This algorithm turns out to

coincide with the deterministic DDIM.

Proposition 5. With the parameterization sθ(u, τ) = − ϵθ(u, τ)√
1− ατ

and the approximation

ϵθ(u, τ) ≈ ϵθ(u(t), t) for τ ∈ [t−∆t, t], the solution to the probability flow ODE Eq. (7.7)
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with coefficient Eq. (7.8) is

u(t−∆t) =

√
αt−∆t

αt

u(t) + (
√
1− αt−∆t −

√
1− αt

√
αt−∆t

αt

)ϵθ(u(t), t), (7.12)

which coincides with deterministic DDIM.

When ϵθ = ϵGT as is the case in our toy example, there is no approximation error in

Prop 5 and Eq. (7.12) is precise. This implies that deterministic DDIM can recover the

training data in one step in our example. The update Eq. (7.12) corresponds to a numerical

method known as the exponential integrator to the probability flow ODE Eq. (7.7) with

coefficient Eq. (7.8) and parameterization sθ(u, τ) = − ϵθ(u, τ)√
1− ατ

. This strategy is used

and developed recently in [207]. Prop 4 and toy experiments in Fig. 7.2 provide sights on

why such a strategy should work.

SDE sampling The above discussions however do not hold for stochastic cases where

λ > 0 in Eq. (7.6) and σti > 0 in Eq. (7.9). Since the solutions to Eq. (7.6) from t = T

to t = 0 are stochastic, neither ∇ log pt(u(t)) nor ϵGT(u(t), t) remains constant along

sampled trajectories; both are affected by the stochastic noise. The denoising SDE Eq. (7.6)

is more challenging compared with the probability ODE since it injects additional noise to

u(t). The score information needs to remove not only noise presented in u(T ) but also

injected noise along the diffusion. In general, one evaluation of ϵθ(u, t) can only provide

the information to remove noise in the current state u; it cannot predict the future injected

noise. Can we do better? The answer is affirmative on our toy dataset. Given only one

score evaluation, it turns out that score at any point can be recovered.

Proposition 6. Assume SDE coefficients Eq. (7.8) and that p0(u) is a Dirac distribution.

Given any evaluation of the score function∇ log ps(u(s)), one can recover∇ log pt(u) for
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any t,u as

∇ log pt(u) =
1− αs

1− αt

√
αt

αs

∇ log ps(u(s))−
1

1− αt

(u−
√
αt

αs

u(s)). (7.13)

The major difference between Prop 6 and Prop 4 is that Eq. (7.13) retains the depen-

dence of the score over the state u. This dependence is important in canceling the injected

noise in the denoising SDE Eq. (7.6). This approximation Eq. (7.13) turns out to lead to a

numerical scheme for Eq. (7.6) that coincide with the stochastic DDIM.

Theorem 6. Given the parameterization sθ(u, τ) = − ϵθ(u, τ)√
1− ατ

and the approximation

sθ(u, τ) ≈
1− αt

1− ατ

√
ατ

αt

sθ(u(t), t)−
1

1− ατ

(u−
√
ατ

αt

u(t)) for τ ∈ [t−∆t, t], the exact

solution u(t−∆t) to Eq. (7.6) with coefficient Eq. (7.8) is

u(t−∆t) ∼ N (

√
αt−∆t

αt

u(t)+

[
−
√
αt−∆t

αt

√
1− αt +

√
1− αt−∆t − σ2

t

]
ϵθ(u(t), t), σ

2
t Id)

(7.14)

with σt = (1−αt−∆t)

[
1−

(
1− αt−∆t

1− αt

)λ2 (
αt

αt−∆t

)λ2
]

, which is the same as the DDIM

Eq. (7.9).

Note that theorem 6 with λ = 0 agrees with Prop 5; both reproduce the deterministic

DDIM but with different derivations. In summary, DDIMs can be derived by utilizing local

approximations.

Justification of Dirac approximation While Prop 4 and Prop 6 require the strong as-

sumption that the data distribution is a Dirac, DDIMs in Prop 5 and theorem 6 work very

effectively on realistic datasets, which may contain millions of datapoints [188]. Here we

present one possible interpretation based on the manifold hypothesis [209].

It is believed that real-world data lie on a low-dimensional manifold [210] embedded in

a high-dimensional space and the data points are well separated in high-dimensional data

space. For example, realistic images are scattered in pixel space and the distance between
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Figure 7.2: Manifold hypothesis and Dirac distribution assumption. We model an image
dataset as a mixture of well-separated Dirac distribution and visualize the diffusion process
on the left. Curves in red indicate high density area spanned by p0t(u(t)|u(0)) by different
mode and region surrounded by them indicates the phase when pt(u) is dominated by
one mode while region surrounded by blue one is for the mixing phase, and green region
indicates fully mixed phase. On the right, sampling trajectories depict smoothness of ϵGT

along ODE solutions, which justifies approximations used in DDIM and partially explains
its empirical acceleration.

every two images can be very large if measured in pixel difference even if they are similar

perceptually. To model this property, we consider a dataset consisting of M datapoints

{u(m)}Mm=1. The exact score is

∇ log pt(u) =
∑
m

wm∇ log p0t(u|u(m)), wm =
p0t(u|u(m))∑
m p0t(u|u(m))

, (7.15)

which can be interpreted as a weighted sum of M score functions associated with Dirac

distributions. This is illustrated in Fig. 7.2. In the red color region where the weights

{wm} are dominated by one specific data u(m∗) and thus∇ log pt(u) ≈ ∇ log p0t(u|u(m∗)).

Moreover, in the green region different modes have similar ∇ log p0t(u|u(m)) as all of

them are close to Gaussian and can be approximated by any condition score of any mode.

The {ϵGT(u(t), t)} trajectories in Fig. 7.2 validate our hypothesis as we have very smooth

curves at the beginning and ending period. The phenomenon that score of realistic datasets
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can be locally approximated by the score of one datapoint partially justifies the Dirac dis-

tribution assumption in Prop 4 and 6 and the effectiveness of DDIMs.

7.4 Generalize and improve DDIM

The DDIM is specifically designed for DDPMs. Can we generalize it to other DMs? With

the insights in Prop 4 and 6, it turns out that with a carefully chosen Kτ , we can gener-

alize DDIMs to any DMs with general drift and diffusion. We coin the resulted algorithm

the Generalized DDIM (gDDIM).

7.4.1 Deterministic gDDIM

Toy dataset: Motivated by Prop 4, we ask whether there exists an ϵGT that remains constant

along a solution to the probability flow ODE Eq. (7.7). We start with a special case with

initial distribution p0(u) = N (u0,Σ0). It turns out that any solution to Eq. (7.7) is of the

form

u(t) = Ψ(t, 0)u0 +Rtϵ (7.16)

with a constant ϵ and a time-varying parameterization coefficients Rt ∈ RD×D that satisfies

R0R
T
0 = Σ0 and

dRt

dt
= (Ft +

1

2
GtG

T
t Σ

−1
t )Rt. (7.17)

Here Ψ(t, s) is the transition matrix associated with Fτ ; it is the solution to
∂Ψ(t, s)

∂t
=

FtΨ(t, s),Ψ(s, s) = ID. Interestingly, Rt satisfies RtR
T
t = Σt like Kt in Eq. (7.4). We

remark Kt =
√
1− αtId is a solution to Eq. (7.17) when the DM is specialized to DDPM.

Based on Eq. (7.16) and Eq. (7.17), we extend Prop 4 to more general DMs.

Proposition 7. Assume the data distribution p0(u) is N (u0,Σ0). Let u(t) be an arbi-

trary solution to the probability flow ODE Eq. (7.7) with the ground truth score, then

ϵGT(u(t), t) := −RT
t ∇ log pt(u(t)) remains constant along u(t).
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Note that Prop 7 is slightly more general than Prop 4 in the sense that the initial distri-

bution p0 is a Gaussian instead of a Dirac. Diffusion models with augmented states such as

CLD use a Gaussian distribution on the velocity channel for each data point. Thus, when

there is a single data point, the initial distribution is a Gaussian instead of a Dirac distribu-

tion. A direct consequence of Prop 7 is that we can conduct accurate sampling in one step

in the toy example since we can recover the score along any simulated trajectory given its

value at t = T , if Kt in Eq. (7.4) is set to be Rt. This choice Kt = Rt will make a huge

difference in sampling quality as we will show later. The fact provides guidance to design

an efficient sampling scheme for realistic data.

Realistic dataset: As the accurate score is not available for realistic datasets, we need

to use learned score sθ(u, t) for sampling. With our new parameterization ϵθ(u, t) =

−RT
t sθ(u, t) and the approximation ϵ̃θ(u, τ) = ϵθ(u(t), t) for τ ∈ [t − ∆t, t], we reach

the update step for deterministic gDDIM by solving probability flow with approximator

ϵ̃θ(u, τ) exactly as

u(t−∆t) = Ψ(t−∆t, t)u(t) + [

∫ t−∆t

t

1

2
Ψ(t−∆t, τ)GτG

T
τ R

−T
τ dτ ]ϵθ(u(t), t), (7.18)

Multistep predictor-corrector for ODE: Inspired by [207], we further boost the sam-

pling efficiency of gDDIM by combining Eq. (7.18) with multistep methods [23, 207, 195].

We derive multistep predictor-corrector methods to reduce the number of steps while re-

taining accuracy [211, 212]. Empirically, we found that using more NFEs in predictor leads

to better performance when the total NFE is small. Thus, we only present multistep pre-

dictor for deterministic gDDIM. For time discretization grid {ti}Ni=0 where t0 = 0, tN = T ,
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the q-th step predictor from ti to ti−1 in term of ϵθ parameterization reads

u(ti−1) = Ψ(ti−1, ti)u(ti) +

q−1∑
j=0

[Cijϵθ(u(ti+j), ti+j)], (7.19a)

Cij =

∫ ti−1

ti

1

2
Ψ(ti−1, τ)GτG

T
τ R

−T
τ

∏
k ̸=j

[
τ − ti+k

ti+j − ti+k

]dτ. (7.19b)

We note that coefficients in Eqs. (7.18) and (7.19b) for general DMs can be calculated

efficiently using standard numerical solvers if closed-form solutions are not available.

7.4.2 Stochastic gDDIM

Following the same spirits, we generalize Prop 6

Proposition 8. Assume the data distribution p0(u) is N (u0,Σ0). Given any evaluation of

the score function∇ log ps(u(s)), one can recover∇ log pt(u) for any t,u as

∇ log pt(u) = Σ−1
t Ψ(t, s)Σs∇ log ps(u(s))− Σ−1

t [u−Ψ(t, s)u(s)]. (7.20)

Prop 8 is not surprising; in our example, the score has a closed form. Eq. (7.20) not

only provides an accurate score estimation for our toy dataset, but also serves as a score

approximator for realistic data.

Realistic dataset: Based on Eq. (7.20), with the parameterization sθ(u, τ) = −R−T
τ ϵθ(u, τ),

we propose the following gDDIM approximator ϵ̃θ(u, τ) for ϵθ(u, τ)

ϵ̃θ(u, τ) = R−1
τ Ψ(τ, s)Rsϵθ(u(s), s) +R−1

τ [u−Ψ(τ, s)u(s)]. (7.21)

Proposition 9. With the parameterization ϵθ(u, t) = −RT
t sθ(u, t) and the approximator

ϵ̃θ(u, τ) in Eq. (7.21), the solution to Eq. (7.6) satisfies

u(t) ∼ N (Ψ(t, s)u(s) + [Ψ̂(t, s)−Ψ(t, s)]Rsϵθ(u(s), s),Pst), (7.22)

106



where Ψ̂(t, s) is the transition matrix associated with F̂τ := Fτ +
1 + λ2

2
GτG

T
τ Σ

−1
τ and

the covariance matrix Pst solves

dPsτ

dτ
= F̂τPsτ + Psτ F̂

T
τ + λ2GτG

T
τ , Pss = 0. (7.23)

Our stochastic gDDIM then uses Eq. (7.22) for update. Though the stochastic gDDIM

and the deterministic gDDIM look quite different from each other, there exists a connection

between them.

Proposition 10. Eq. (7.22) in stochastic gDDIM reduces to Eq. (7.18) in deterministic

gDDIM when λ = 0.

7.5 Experiments

As gDDIM reduces to DDIM for VPSDE and DDIM proves very successful, we validate

the generation and effectiveness of gDDIM on CLD and BDM. We design experiments to

answer the following questions. How to verify Prop 7 and 8 empirically? Can gDDIM im-

prove sampling efficiency compared with existing works? What differences do the choice

of λ and Kt make?

Choice of Kt: A key of gDDIM is the special choice Kt = Rt which is obtained

via solving Eq. (7.17). In CLD, [196] choose Kt = Lt based on Cholesky decomposition

of Σt and it does not obey Eq. (7.17). As it is shown in Fig. 7.1, on real datasets with a

trained score model, we randomly pick pixel locations and check the pixel value and ϵθ

output along the solutions to the probability flow ODE produced by the high-resolution

ODE solver. With the choice Kt = Lt, ϵ
(L)
θ (u, t;v) suffers from oscillation like x value

along time. However, ϵ(R)
θ (u, t) is much more flat. We further compare samples generated

by Lt and Rt parameterizaiton in Tab. 7.1, where both use the multistep exponential solver

in Eq. (7.19).

Choice of λ: We further conduct a study with different λ values. Note that polynomial
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Table 7.1: Lt vs Rt (Our) on CLD

FID at different NFE
Kt 20 30 40 50
Lt 368 167 4.12 3.31
Rt 3.90 2.64 2.37 2.26

Table 7.2: λ and integrators choice with NFE=50

FID at different λ
Method 0.0 0.1 0.3 0.5 0.7 1.0
gDDIM 5.17 5.51 12.13 33 41 49
EM 346 168 137 89 45 57

extrapolation in Eq. (7.19) is not used here even when λ = 0. As it is shown in Tab. 7.2,

increasing λ deteriorates the sample quality, demonstrating our claim that deterministic

DDIM has better performance than its stochastic counterpart when a small NFE is used.

We also find stochastic gDDIM significantly outperforms EM, which indicates the effec-

tiveness of the approximation Eq. (7.21).

Accelerate various DMs: We present a comparison among various DMs and various

sampling algorithms. To make a fair comparison, we compare three DMs with similar size

networks while retaining other hyperparameters from their original works. We make two

modifications to DDPM, including continuous-time training [4] and smaller stop sampling

time [132], which help improve sampling quality empirically. For BDM, we note [25] only

supports the ancestral sampling algorithm, a variant of EM algorithm. With reformulated

noising and denoising process as SDE Eq. (7.11), we can generate samples by solving

corresponding SDE/ODEs. The sampling quality of gDDIM with 50 NFE can outperform

the original ancestral sampler with 1000 NFE, more than 20 times acceleration.

7.6 Conclusions and limitations

Contribution: The more structural knowledge we leverage, the more efficient algorithms

we obtain. In this work, we provide a clean interpretation of DDIMs based on the manifold

hypothesis and the sparsity property on realistic datasets. This new perspective unboxes
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Table 7.3: Acceleration on various DMs with similar training pipelines and architecture.
For RK45, we tune its tolerance hyperparameters so that the real NFE is close but not equal
to the given NFE. †: pre-trained model from [4]. ††: [132] apply Heun method in rescaled
DM, which is essentially a variant of DEIS [207]

FID (↓) under different NFE
DM Sampler 10 20 50 100 1000

DDPM†

EM >100 >100 31.2 12.2 2.64
Prob.Flow, RK45 >100 52.5 6.62 2.63 2.56
2nd Heun†† 66.25 6.62 2.65 2.57 2.56
gDDIM 4.17 3.03 2.59 2.56 2.56

BDM
Ancestral sampling >100 >100 29.8 9.73 2.51
Prob.Flow, RK45 >100 68.2 7.12 2.58 2.46
gDDIM 4.52 2.97 2.49 2.47 2.46

CLD
EM >100 >100 57.72 13.21 2.39
Prob.Flow, RK45 >100 >100 31.7 4.56 2.25
gDDIM 13.41 3.39 2.26 2.26 2.25

the numerical discretization used in DDIM and explains the advantage of ODE-based sam-

pler over SDE-based when NFE is small. Based on this interpretation, we extend DDIMs

to general diffusion models. The new algorithm, gDDIM, only requires a tiny but elegant

modification to the parameterization of the score model and improves sampling efficiency

drastically. We conduct extensive experiments to validate the effectiveness of our new sam-

pling algorithm. Limitation: There are several promising future directions. First, though

gDDIM is designed for general DMs, we only verify it on three DMs. It is beneficial to ex-

plore more efficient diffusion processes for different datasets, in which we believe gDDIM

will play an important role in designing sampling algorithms. Second, more investiga-

tions are needed to design an efficient sampling algorithm by exploiting more structural

knowledge in DMs. The structural knowledge can originate from different sources such as

different modalities of datasets, and mathematical structures presented in specific diffusion

processes.
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CHAPTER 8

CONCLUSION AND FUTURE WORKS

8.1 Conclusion

In this thesis, I investigate the representation, learning, sampling, and inference tasks of

probability modeling, which involve modeling a probabilistic distribution for specific sam-

ples of interest. Specifically, we delve into problems built upon representations via stochas-

tic differential equations (SDEs), aiming to explore efficient and scalable algorithms for

high-dimensional data.

We initially provide a scalable learning framework, named Diffusion Normalizing Flow,

which enables learning to generate based on neural SDEs for medium-sized tasks. This

approach offers manageable training costs and reduced inference time compared to the

standard diffusion model’s stochastic sampling approach.

Regarding scaling up with respect to data, we aim to learn generators that are more

adaptable to data, which do not require complete data during training. To this end, we

propose ’Diffusion Collage,’ a novel algorithm capable of flexibly generating large con-

tent, yet trained only on incomplete data. Built upon conditional independence and the

Bethe approximation, Diffusion Collage approximates the score of the joint distribution

by combining scores of multiple marginal distributions. This method demonstrates its ver-

satility in generating infinite images, various image editing tasks, long-duration motion

generation, and 360-degree image synthesis. Additionally, we introduce the Path Integral

Sampler, which enables learning neural SDEs to drive samples from a direct point to the

target distribution, accessing only the density information of the target distribution.

To scale up with computation and build a computation-friendly approach toward prob-

ability modeling, we introduce a more efficient sampling algorithm to draw novel samples
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from pre-trained diffusion generators. By leveraging exponential integrators and appropri-

ate parameterization, we can circumvent unnecessary discretization and reduce the number

of function evaluations while retaining sampling quality. We further enhance sampling per-

formance by introducing polynomial extrapolation. This extrapolation comes at zero cost

by leveraging function evaluations from previous network assessments.

As a breakthrough realization of probability modeling, diffusion-based generative mod-

els have revolutionized content generation, especially in the field of visual content. I am

convinced that diffusion-based probability modeling marks merely the commencement of

a broader exploration. Numerous unknown aspects in this field persist, presenting ample

opportunities for future investigation and discovery.

8.2 Toward more efficient and scalable probability modeling

Despite the significant advancements achieved in multiple fields through SDE-based proba-

bility modeling, several challenges continue to present themselves. Additionally, numerous

theoretical and empirical research questions remain open, warranting further exploration.

In this section, I outline a few of these persistent challenges that are particularly deserving

of deeper investigation.

Representations for probability modeling In the realm of probabilistic modeling algo-

rithms, the development and effectiveness of most learning, sampling, and inference algo-

rithms are typically tailored to and most effective for specific representation approaches.

For instance, transferring techniques from diffusion models to enhance GAN (Generative

Adversarial Network) performance is non-trivial and rarely straightforward. The notable

success of diffusion models over previous generative models can be largely attributed to

their expressive approach in representing probability distributions and scalable training

built upon the representation. Consequently, it becomes a compelling endeavor to explore

approaches that might surpass the current capabilities of diffusion models in probabilistic
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modeling. Several limitations of diffusion generative models stem from their representa-

tion; for example, the slow generation speed is a consequence of their iterative denoising

scheme. Several recent studies, such as those by Song et al [213] and Liu et al [214],

have explored better coupling between Gaussian noise and samples from the target distri-

bution. However, these approaches often result in faster sampling speeds at the cost of

reduced generation quality. Furthermore, given the prevailing belief that realistic data re-

sides within a low-dimensional manifold, it seems promising to investigate the potential of

more meaningful and compact latent spaces, as opposed to relying solely on pure noise.

Maximum likelihood estimation and metrics Maximum Likelihood Estimation (MLE)

is a widely employed method in learning probability models, encompassing neural SDEs

and diffusion models. However, MLE does not always yield the optimal quality in the

resulting models. For example, diffusion models trained using MLE have demonstrated in-

ferior sampling quality in image generation tasks compared to those trained with weighted

likelihood approaches, as noted by Song et. al. [206]. Furthermore, models like Nor-

malizing Flow and VAEs, when trained using MLE, often exhibit unsatisfactory sampling

quality. A commonly cited explanation for this is that the visual texture in images, which is

highly redundant, requires significantly fewer bits for compression. In contrast, MLE-like

loss functions are the default choice for language modeling during the pre-training stage.

The inadequacy of MLE loss in training visual generative models presents a significant

challenge: the absence of reliable metrics to compare various models and quantify im-

provements, as well as to guide principled optimization of neural network parameters. For

instance, in diffusion-based image generative models, researchers cannot rely on a perplex-

ity loss, as in language modeling, and instead must depend on empirical metrics such as FID

and KID for performance evaluation. These metrics, however, are sometimes misaligned

with human judgment and can be sensitive to nuances in engineering implementation [215].

Moving forward, finding reliable and efficient metrics to measure improvement is critical
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for making measurable progress in probabilistic modeling.

Efficient and versatile architecture Large-scale probability models, such as 1k image

diffusion models, are typically trained with large neural networks, which are computation-

ally expensive for both training and inference. For instance, the current state-of-the-art

diffusion model [20] consists of 9.1 billion parameters and takes over 30 seconds to gener-

ate a single image on an Nvidia A100.

A promising research direction is to investigate network architecture to reduce the com-

putational costs of generators while maintaining the quality of the learned model. Addi-

tionally, the generative network architectures differ across various modalities and require

extensive architecture search. Given recent works demonstrating the applicability of trans-

former networks across various tasks [216], exploring the feasibility of designing a general

architecture that can be used across different modalities is worthwhile.

The scaling law and generalization Diffusion models, akin to large language models,

are increasingly being utilized as foundational frameworks for large-scale content gener-

ation. However, there exists a notable disparity in research: while language models have

been extensively empirically studied [217, 218], there is a paucity of studies exploring the

scaling laws and generalization capabilities of diffusion models, particularly in computer

vision. This gap is particularly surprising given the importance of understanding the scaling

law in this domain. When it comes to visual content generation, how the quality of samples

generated by diffusion models and their generalization ability are influenced by the model’s

parameter count and the volume of training data remains an unresolved question. For the

development of large foundational models, the ability to finely tune and control a model,

and to scale it predictably and effectively, is of paramount importance.
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[36] H. Wu, J. Köhler, and F. Noé, “Stochastic normalizing flows,” Advances in Neural
Information Processing Systems, vol. 33, pp. 5933–5944, 2020.
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